Zhiyong Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4932315/publications.pdf Version: 2024-02-01

ΖΗΙΧΟΝΟ ΜΛΟ

#	Article	IF	CITATIONS
1	Chrysin impairs genomic stability by suppressing DNA double-strand break repair in breast cancer cells. Cell Cycle, 2022, 21, 379-391.	2.6	8
2	The Roles of RNA Helicases in DNA Damage Repair and Tumorigenesis Reveal Precision Therapeutic Strategies. Cancer Research, 2022, 82, 872-884.	0.9	8
3	Sirt1 Protects Subventricular Zone-Derived Neural Stem Cells from DNA Double-Strand Breaks and Contributes to Olfactory Function Maintenance in Aging Mice. Stem Cells, 2022, 40, 493-507.	3.2	8
4	DNA polymerase η promotes nonhomologous end joining upon etoposide exposure dependent on the scaffolding protein Kap1. Journal of Biological Chemistry, 2022, 298, 101861.	3.4	2
5	Enhancement of Xrcc1-mediated base excision repair improves the genetic stability and pluripotency of iPSCs. Science Bulletin, 2022, 67, 1126-1130.	9.0	1
6	Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS. Molecular Cell, 2022, 82, 2032-2049.e7.	9.7	31
7	Preclinical validation and phase I trial of 4-hydroxysalicylanilide, targeting ribonucleotide reductase mediated dNTP synthesis in multiple myeloma. Journal of Biomedical Science, 2022, 29, 32.	7.0	6
8	DNA double-strand break repair and nucleic acid-related immunity. Acta Biochimica Et Biophysica Sinica, 2022, 54, 828-835.	2.0	7
9	Lycorine hydrochloride suppresses stressâ€induced premature cellular senescence by stabilizing the genome of human cells. Aging Cell, 2021, 20, e13307.	6.7	18
10	The deacetylation-phosphorylation regulation of SIRT2-SMC1A axis as a mechanism of antimitotic catastrophe in early tumorigenesis. Science Advances, 2021, 7, .	10.3	17
11	Reply to: Binding site for MDL-801 on SIRT6. Nature Chemical Biology, 2021, 17, 522-523.	8.0	9
12	A Small-Molecule Inhibitor Targeting TRIP13 Suppresses Multiple Myeloma Progression. Cancer Research, 2020, 80, 536-548.	0.9	28
13	Base excision repair but not DNA doubleâ€strand break repair is impaired in aged human adiposeâ€derived stem cells. Aging Cell, 2020, 19, e13062.	6.7	11
14	Fight to the bitter end: DNA repair and aging. Ageing Research Reviews, 2020, 64, 101154.	10.9	32
15	Rational combination therapy for hepatocellular carcinoma with PARP1 and DNA-PK inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26356-26365.	7.1	35
16	The SIRT6 activator MDLâ€800 improves genomic stability and pluripotency of old murineâ€derived iPS cells. Aging Cell, 2020, 19, e13185.	6.7	22
17	An HMGA2â€p62â€ERα axis regulates uterine leiomyomas proliferation. FASEB Journal, 2020, 34, 10966-10983.	0.5	9
18	The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. Nucleic Acids Research, 2020, 48, 9181-9194.	14.5	33

Zhiyong Mao

#	Article	IF	CITATIONS
19	Diosmetin enhances the sensitivity of radiotherapy by suppressing homologous recombination in endometrial cancer. Cell Cycle, 2020, 19, 3115-3126.	2.6	2
20	Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology, 2020, 22, 740-750.	10.3	69
21	Triptolide impairs genome integrity by directly blocking the enzymatic activity of DNA-PKcs in human cells. Biomedicine and Pharmacotherapy, 2020, 129, 110427.	5.6	7
22	A high-throughput small molecule screen identifies farrerol as a potentiator of CRISPR/Cas9-mediated genome editing. ELife, 2020, 9, .	6.0	22
23	SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell, 2019, 177, 622-638.e22.	28.9	225
24	Single senescent cell sequencing reveals heterogeneity in senescent cells induced by telomere erosion. Protein and Cell, 2019, 10, 370-375.	11.0	33
25	OUP accepted manuscript. Nucleic Acids Research, 2019, 47, 8563-8580.	14.5	46
26	Use of the XRCC2 promoter for in vivo cancer diagnosis and therapy. Cell Death and Disease, 2018, 9, 420.	6.3	11
27	Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature, 2018, 563, 131-136.	27.8	412
28	Identification of a cellularly active SIRT6 allosteric activator. Nature Chemical Biology, 2018, 14, 1118-1126.	8.0	193
29	NASP antagonize chromatin accessibility through maintaining histone H3K9me1 in hepatocellular carcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3438-3448.	3.8	14
30	The transcription factor GATA3 is required for homologous recombination repair by regulating CtIP expression. Oncogene, 2017, 36, 5168-5176.	5.9	13
31	Sirt6 Promotes DNA End Joining in iPSCs Derived from Old Mice. Cell Reports, 2017, 18, 2880-2892.	6.4	37
32	POT1 inhibits the efficiency but promotes the fidelity of nonhomologous end joining at non-telomeric DNA regions. Aging, 2017, 9, 2529-2543.	3.1	15
33	Impaired DNA double-strand break repair contributes to the age-associated rise of genomic instability in humans. Cell Death and Differentiation, 2016, 23, 1765-1777.	11.2	71
34	SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Research, 2016, 26, 190-205.	12.0	261
35	SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner. Cell Cycle, 2015, 14, 269-276.	2.6	96
36	RAD6 Promotes Homologous Recombination Repair by Activating the Autophagy-Mediated Degradation of Heterochromatin Protein HP1. Molecular and Cellular Biology, 2015, 35, 406-416.	2.3	39

Zhiyong Mao

#	Article	IF	CITATIONS
37	Knock-In Reporter Mice Demonstrate that DNA Repair by Non-homologous End Joining Declines with Age. PLoS Genetics, 2014, 10, e1004511.	3.5	95
38	Regulation of Rad51 promoter. Cell Cycle, 2014, 13, 2038-2045.	2.6	21
39	Utilization of Rad51C promoter for transcriptional targeting of cancer cells. Oncotarget, 2014, 5, 1805-1811.	1.8	5
40	High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature, 2013, 499, 346-349.	27.8	612
41	Changes in the Expression of miR-381 and miR-495 Are Inversely Associated with the Expression of the MDR1 Gene and Development of Multi-Drug Resistance. PLoS ONE, 2013, 8, e82062.	2.5	79
42	Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11800-11805.	7.1	162
43	Replicatively senescent cells are arrested in G1 and G2 phases. Aging, 2012, 4, 431-435.	3.1	94
44	SIRT6 Promotes DNA Repair Under Stress by Activating PARP1. Science, 2011, 332, 1443-1446.	12.6	717
45	SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle, 2011, 10, 3153-3158.	2.6	130
46	Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Aging, 2011, 3, 829-835.	3.1	57
47	Analysis of DNA Double-strand Break (DSB) Repair in Mammalian Cells. Journal of Visualized Experiments, 2010, , .	0.3	88
48	Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19352-19357.	7.1	305
49	DNA Repair by Homologous Recombination, But Not by Nonhomologous End Joining, Is Elevated in Breast Cancer Cells. Neoplasia, 2009, 11, 683-IN3.	5.3	90
50	Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair, 2008, 7, 1765-1771.	2.8	500
51	DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle, 2008, 7, 2902-2906.	2.6	515
52	Changes in DNA repair during aging. Nucleic Acids Research, 2007, 35, 7466-7474.	14.5	306
53	TRF2 is required for repair of nontelomeric DNA double-strand breaks by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13068-13073.	7.1	95