John R Mascola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4930036/publications.pdf Version: 2024-02-01

		435	799
384	73,440	131	247
papers	citations	h-index	g-index
411	411	411	43222
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 2021, 384, 403-416.	27.0	7,910
2	An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. New England Journal of Medicine, 2020, 383, 1920-1931.	27.0	2,719
3	Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021, 593, 130-135.	27.8	1,904
4	Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science, 2010, 329, 856-861.	12.6	1,600
5	Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nature Medicine, 2000, 6, 207-210.	30.7	1,237
6	SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 2020, 586, 567-571.	27.8	1,153
7	Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science, 2010, 329, 811-817.	12.6	1,050
8	Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. Journal of Virology, 2005, 79, 10108-10125.	3.4	1,025
9	Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.	27.8	961
10	Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.	27.0	936
11	Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature, 2009, 458, 636-640.	27.8	806
12	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	27.8	794
13	Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing. Science, 2011, 333, 1593-1602.	12.6	788
14	Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature, 2012, 491, 406-412.	27.8	753
15	Protection of Macaques against Pathogenic Simian/Human Immunodeficiency Virus 89.6PD by Passive Transfer of Neutralizing Antibodies. Journal of Virology, 1999, 73, 4009-4018.	3.4	725
16	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	27.8	702
17	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	27.8	681
18	Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. New England Journal of Medicine, 2021, 384, 80-82.	27.0	665

2

#	Article	IF	CITATIONS
19	Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. New England Journal of Medicine, 2021, 384, 2259-2261.	27.0	603
20	Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies. Journal of Virology, 2010, 84, 1439-1452.	3.4	589
21	Human skin Langerhans cells are targets of dengue virus infection. Nature Medicine, 2000, 6, 816-820.	30.7	586
22	Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nature Medicine, 2015, 21, 1065-1070.	30.7	567
23	Efficacy Trial of a DNA/rAd5 HIV-1 Preventive Vaccine. New England Journal of Medicine, 2013, 369, 2083-2092.	27.0	518
24	The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nature Medicine, 1997, 3, 338-340.	30.7	480
25	Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants. Science, 2021, 373, 1372-1377.	12.6	459
26	Structure and Mechanistic Analysis of the Anti-Human Immunodeficiency Virus Type 1 Antibody 2F5 in Complex with Its gp41 Epitope. Journal of Virology, 2004, 78, 10724-10737.	3.4	452
27	Gene transfer in humans using a conditionally replicating lentiviral vector. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17372-17377.	7.1	452
28	<scp>HIV</scp> â€1 neutralizing antibodies: understanding nature's pathways. Immunological Reviews, 2013, 254, 225-244.	6.0	442
29	Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. Journal of Immunological Methods, 2014, 409, 131-146.	1.4	435
30	A strategic approach to COVID-19 vaccine R&D. Science, 2020, 368, 948-950.	12.6	419
31	Human Antibodies that Neutralize HIV-1: Identification, Structures, and B Cell Ontogenies. Immunity, 2012, 37, 412-425.	14.3	417
32	Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. New England Journal of Medicine, 2021, 385, 1774-1785.	27.0	402
33	Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature, 2014, 515, 138-142.	27.8	400
34	Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011, 85, 9998-10009.	3.4	393
35	Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. New England Journal of Medicine, 2016, 375, 2037-2050.	27.0	391
36	Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine?. Nature Medicine, 2009, 15, 866-870.	30.7	390

#	Article	IF	CITATIONS
37	Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Science Translational Medicine, 2015, 7, 319ra206.	12.4	390
38	Trimeric HIV-1-Env Structures Define Clycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	28.9	379
39	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	14.3	374
40	Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science, 2016, 351, 1339-1342.	12.6	370
41	Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nature Medicine, 2007, 13, 1032-1034.	30.7	364
42	Antibody responses to envelope glycoproteins in HIV-1 infection. Nature Immunology, 2015, 16, 571-576.	14.5	364
43	The Role of Antibodies in HIV Vaccines. Annual Review of Immunology, 2010, 28, 413-444.	21.8	356
44	Rapid development of a DNA vaccine for Zika virus. Science, 2016, 354, 237-240.	12.6	348
45	The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	347
46	Preserved CD4+ Central Memory T Cells and Survival in Vaccinated SIV-Challenged Monkeys. Science, 2006, 312, 1530-1533.	12.6	343
47	SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. New England Journal of Medicine, 2022, 386, 1088-1091.	27.0	338
48	Profiling the Specificity of Neutralizing Antibodies in a Large Panel of Plasmas from Patients Chronically Infected with Human Immunodeficiency Virus Type 1 Subtypes B and C. Journal of Virology, 2008, 82, 11651-11668.	3.4	337
49	Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. Aids, 2014, 28, 163-169.	2.2	334
50	Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nature Structural and Molecular Biology, 2015, 22, 522-531.	8.2	333
51	Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.	14.3	332
52	Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nature Medicine, 2014, 20, 1126-1129.	30.7	311
53	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	12.6	310
54	Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature, 2014, 514, 642-645.	27.8	308

#	Article	IF	CITATIONS
55	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	28.9	305
56	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
57	Breadth of Human Immunodeficiency Virus-Specific Neutralizing Activity in Sera: Clustering Analysis and Association with Clinical Variables. Journal of Virology, 2010, 84, 1631-1636.	3.4	304
58	Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity, 2016, 45, 1108-1121.	14.3	304
59	Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nature Reviews Immunology, 2013, 13, 693-701.	22.7	302
60	Frequency and Phenotype of Human Immunodeficiency Virus Envelope-Specific B Cells from Patients with Broadly Cross-Neutralizing Antibodies. Journal of Virology, 2009, 83, 188-199.	3.4	297
61	Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. Journal of Experimental Medicine, 2014, 211, 2061-2074.	8.5	297
62	Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. Journal of Experimental Medicine, 2009, 206, 1117-1134.	8.5	295
63	LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Reports, 2022, 39, 110812.	6.4	287
64	A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature, 2016, 533, 105-109.	27.8	281
65	Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell, 2015, 162, 1090-1100.	28.9	278
66	HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity, 2018, 48, 855-871.	14.3	277
67	Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. Journal of Virology, 2014, 88, 2489-2507.	3.4	274
68	Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120. Science, 2009, 326, 1123-1127.	12.6	271
69	Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nature Medicine, 2016, 22, 1456-1464.	30.7	271
70	Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell, 2016, 166, 609-623.	28.9	270
71	Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. New England Journal of Medicine, 2021, 384, 1003-1014.	27.0	270
72	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	28.9	266

#	Article	IF	CITATIONS
73	Evaluation of candidate vaccine approaches for MERS-CoV. Nature Communications, 2015, 6, 7712.	12.8	258
74	Structural basis for diverse N-glycan recognition by HIV-1–neutralizing V1–V2–directed antibody PG16. Nature Structural and Molecular Biology, 2013, 20, 804-813.	8.2	257
75	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	30.7	256
76	Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody <i>In Vitro</i> Improves Protection against Lentiviral Infection <i>In Vivo</i> . Journal of Virology, 2014, 88, 12669-12682.	3.4	248
77	Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. Science, 2021, 373, eabj0299.	12.6	244
78	Chimpanzee Adenovirus Vector Ebola Vaccine. New England Journal of Medicine, 2017, 376, 928-938.	27.0	243
79	Analysis of Neutralization Specificities in Polyclonal Sera Derived from Human Immunodeficiency Virus Type 1-Infected Individuals. Journal of Virology, 2009, 83, 1045-1059.	3.4	238
80	Monoclonal Antibodies for Prevention and Treatment of COVID-19. JAMA - Journal of the American Medical Association, 2020, 324, 131.	7.4	237
81	Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet, The, 2018, 391, 552-562.	13.7	235
82	Recommendations for the Design and Use of Standard Virus Panels To Assess Neutralizing Antibody Responses Elicited by Candidate Human Immunodeficiency Virus Type 1 Vaccines. Journal of Virology, 2005, 79, 10103-10107.	3.4	233
83	A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine, 2008, 26, 6338-6343.	3.8	230
84	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
85	Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell, 2015, 161, 470-485.	28.9	226
86	Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science, 2017, 358, 85-90.	12.6	225
87	Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5663-5668.	7.1	222
88	Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Science Translational Medicine, 2014, 6, 243ra88.	12.4	222
89	The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature, 2003, 426, 853-857.	27.8	219
90	Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nature Medicine, 2015, 21, 1332-1336.	30.7	215

#	Article	IF	CITATIONS
91	Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e75665.	2.5	214
92	Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization. Science, 2013, 340, 751-756.	12.6	213
93	Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies. Science Translational Medicine, 2017, 9, .	12.4	212
94	Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nature Immunology, 2019, 20, 362-372.	14.5	211
95	Crystal Structure of PG16 and Chimeric Dissection with Somatically Related PG9: Structure-Function Analysis of Two Quaternary-Specific Antibodies That Effectively Neutralize HIV-1. Journal of Virology, 2010, 84, 8098-8110.	3.4	209
96	Mechanism of Neutralization by the Broadly Neutralizing HIV-1 Monoclonal Antibody VRC01. Journal of Virology, 2011, 85, 8954-8967.	3.4	209
97	A proof of concept for structure-based vaccine design targeting RSV in humans. Science, 2019, 365, 505-509.	12.6	207
98	Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet, The, 2014, 384, 2046-2052.	13.7	206
99	New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.	3.4	205
100	A method for identification of HIV gp140 binding memory B cells in human blood. Journal of Immunological Methods, 2009, 343, 65-67.	1.4	204
101	Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires. Cell, 2016, 166, 1471-1484.e18.	28.9	198
102	Two Antigenically Distinct Subtypes of Human Immunodeficiency Virus Type 1: Viral Genotype Predicts Neutralization Serotype. Journal of Infectious Diseases, 1994, 169, 48-54.	4.0	195
103	Differential Susceptibility to Human Immunodeficiency Virus Type 1 Infection of Myeloid and Plasmacytoid Dendritic Cells. Journal of Virology, 2005, 79, 8861-8869.	3.4	192
104	Next-generation influenza vaccines: opportunities and challenges. Nature Reviews Drug Discovery, 2020, 19, 239-252.	46.4	192
105	The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120. AIDS Research and Human Retroviruses, 2012, 28, 1444-1457.	1.1	191
106	Diversion of HIV-1 vaccine–induced immunity by gp41-microbiota cross-reactive antibodies. Science, 2015, 349, aab1253.	12.6	191
107	Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype. Cell Reports, 2016, 16, 1485-1491.	6.4	190
108	Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. Journal of Experimental Medicine, 2005, 201, 2023-2033.	8.5	183

#	Article	IF	CITATIONS
109	Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 2021, 592, 623-628.	27.8	180
110	Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys. Science Translational Medicine, 2011, 3, 81ra36.	12.4	179
111	mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 2022, 185, 1556-1571.e18.	28.9	179
112	A West Nile Virus DNA Vaccine Induces Neutralizing Antibody in Healthy Adults during a Phase 1 Clinical Trial. Journal of Infectious Diseases, 2007, 196, 1732-1740.	4.0	175
113	DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. Lancet Infectious Diseases, The, 2011, 11, 916-924.	9.1	174
114	Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults. PLoS Medicine, 2018, 15, e1002493.	8.4	174
115	Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373, .	12.6	174
116	Antibody Specificities Associated with Neutralization Breadth in Plasma from Human Immunodeficiency Virus Type 1 Subtype C-Infected Blood Donors. Journal of Virology, 2009, 83, 8925-8937.	3.4	170
117	Polyclonal B Cell Responses to Conserved Neutralization Epitopes in a Subset of HIV-1-Infected Individuals. Journal of Virology, 2011, 85, 11502-11519.	3.4	168
118	Isolation of human monoclonal antibodies from peripheral blood B cells. Nature Protocols, 2013, 8, 1907-1915.	12.0	167
119	Analysis of V2 Antibody Responses Induced in Vaccinees in the ALVAC/AIDSVAX HIV-1 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e53629.	2.5	165
120	SARS-CoV-2 Viral Variants—Tackling a Moving Target. JAMA - Journal of the American Medical Association, 2021, 325, 1261.	7.4	165
121	Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity, 2021, 54, 1636-1651.	14.3	165
122	Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in in infant macaques. Nature Medicine, 2016, 22, 362-368.	30.7	163
123	Exclusive and Persistent Use of the Entry Coreceptor CXCR4 by Human Immunodeficiency Virus Type 1 from a Subject Homozygous for <i>CCR5</i> Δ32. Journal of Virology, 1998, 72, 6040-6047.	3.4	163
124	A Human T-Cell Leukemia Virus Type 1 Regulatory Element Enhances the Immunogenicity of Human Immunodeficiency Virus Type 1 DNA Vaccines in Mice and Nonhuman Primates. Journal of Virology, 2005, 79, 8828-8834.	3.4	162
125	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	8.2	162
126	Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Reports, 2017, 19, 719-732.	6.4	160

#	Article	IF	CITATIONS
127	Two Distinct Broadly Neutralizing Antibody Specificities of Different Clonal Lineages in a Single HIV-1-Infected Donor: Implications for Vaccine Design. Journal of Virology, 2012, 86, 4688-4692.	3.4	159
128	Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Journal of Virology, 2018, 92, .	3.4	155
129	Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathogens, 2016, 12, e1005520.	4.7	150
130	Human Dendritic Cells as Targets of Dengue Virus Infection. Journal of Investigative Dermatology Symposium Proceedings, 2001, 6, 219-224.	0.8	149
131	Multiple roles for HIV broadly neutralizing antibodies. Science Translational Medicine, 2019, 11, .	12.4	144
132	Mining the antibodyome for HIV-1–neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6470-6475.	7.1	142
133	Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathogens, 2015, 11, e1004932.	4.7	141
134	Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature, 2014, 505, 502-508.	27.8	140
135	A West Nile Virus DNA Vaccine Utilizing a Modified Promoter Induces Neutralizing Antibody in Younger and Older Healthy Adults in a Phase I Clinical Trial. Journal of Infectious Diseases, 2011, 203, 1396-1404.	4.0	138
136	Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies. Cell Host and Microbe, 2014, 16, 304-313.	11.0	137
137	Replication-Defective Adenovirus Serotype 5 Vectors Elicit Durable Cellular and Humoral Immune Responses in Nonhuman Primates. Journal of Virology, 2005, 79, 6516-6522.	3.4	136
138	Rational Design of Vaccines to Elicit Broadly Neutralizing Antibodies to HIV-1. Cold Spring Harbor Perspectives in Medicine, 2011, 1, a007278-a007278.	6.2	135
139	Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies. Science Translational Medicine, 2017, 9, .	12.4	135
140	Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine, 2007, 25, 4085-4092.	3.8	134
141	Use of broadly neutralizing antibodies for <scp>HIV</scp> â€1 prevention. Immunological Reviews, 2017, 275, 296-312.	6.0	131
142	Heterologous Envelope Immunogens Contribute to AIDS Vaccine Protection in Rhesus Monkeys. Journal of Virology, 2004, 78, 7490-7497.	3.4	126
143	Priming Immunization with DNA Augments Immunogenicity of Recombinant Adenoviral Vectors for Both HIV-1 Specific Antibody and T-Cell Responses. PLoS ONE, 2010, 5, e9015.	2.5	125
144	Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed HIV-1 Env. Journal of Virology, 2015, 89, 5318-5329.	3.4	125

#	Article	IF	CITATIONS
145	HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host and Microbe, 2019, 25, 59-72.e8.	11.0	124
146	Development of Calibrated Viral Load Standards for Group M Subtypes of Human Immunodeficiency Virus Type 1 and Performance of an Improved AMPLICOR HIV-1 MONITOR Test with Isolates of Diverse Subtypes. Journal of Clinical Microbiology, 1999, 37, 2557-2563.	3.9	124
147	The Development of CD4 Binding Site Antibodies during HIV-1 Infection. Journal of Virology, 2012, 86, 7588-7595.	3.4	123
148	Improving Neutralization Potency and Breadth by Combining Broadly Reactive HIV-1 Antibodies Targeting Major Neutralization Epitopes. Journal of Virology, 2015, 89, 2659-2671.	3.4	123
149	HIV-1 Fitness Cost Associated with Escape from the VRC01 Class of CD4 Binding Site Neutralizing Antibodies. Journal of Virology, 2015, 89, 4201-4213.	3.4	121
150	Defining the Protective Antibody Response for HIV-1. Current Molecular Medicine, 2003, 3, 209-216.	1.3	121
151	Multiclade Human Immunodeficiency Virus Type 1 Envelope Immunogens Elicit Broad Cellular and Humoral Immunity in Rhesus Monkeys. Journal of Virology, 2005, 79, 2956-2963.	3.4	120
152	Pathogenicity of Simian-Human Immunodeficiency Virus SHIV-89.6P and SIVmac Is Attenuated in Cynomolgus Macaques and Associated with Early T-Lymphocyte Responses. Journal of Virology, 2005, 79, 8878-8885.	3.4	120
153	Quality and quantity of T _{FH} cells are critical for broad antibody development in SHIV _{AD8} infection. Science Translational Medicine, 2015, 7, 298ra120.	12.4	119
154	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science Immunology, 2017, 2, .	11.9	119
155	Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science, 2022, 376, eabn8897.	12.6	119
156	Structure-Based Stabilization of HIV-1 gp120 Enhances Humoral Immune Responses to the Induced Co-Receptor Binding Site. PLoS Pathogens, 2009, 5, e1000445.	4.7	113
157	The V3 Loop Is Accessible on the Surface of Most Human Immunodeficiency Virus Type 1 Primary Isolates and Serves as a Neutralization Epitope. Journal of Virology, 2004, 78, 2394-2404.	3.4	111
158	Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity, 2019, 51, 915-929.e7.	14.3	111
159	Broadly neutralizing antibodies target the coronavirus fusion peptide. Science, 2022, 377, 728-735.	12.6	111
160	lterative structure-based improvement of a fusion-glycoprotein vaccine against RSV. Nature Structural and Molecular Biology, 2016, 23, 811-820.	8.2	110
161	Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nature Chemical Biology, 2017, 13, 1115-1122.	8.0	110
162	PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not Induce Conformational Changes Characteristic of CD4. Journal of Virology, 2012, 86, 4394-4403.	3.4	109

#	Article	IF	CITATIONS
163	Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet, The, 2015, 385, 1545-1554.	13.7	109
164	Functional interrogation and mining of natively paired human VH:VL antibody repertoires. Nature Biotechnology, 2018, 36, 152-155.	17.5	109
165	Canarypox Virus-Induced Maturation of Dendritic Cells Is Mediated by Apoptotic Cell Death and Tumor Necrosis Factor Alpha Secretion. Journal of Virology, 2000, 74, 11329-11338.	3.4	108
166	High-Resolution Definition of Vaccine-Elicited B Cell Responses Against the HIV Primary Receptor Binding Site. Science Translational Medicine, 2012, 4, 142ra96.	12.4	108
167	Particulate Array of Well-Ordered HIV Clade C Env Trimers Elicits Neutralizing Antibodies that Display a Unique V2 Cap Approach. Immunity, 2017, 46, 804-817.e7.	14.3	107
168	Human Immunodeficiency Virus Type 1 Neutralization Measured by Flow Cytometric Quantitation of Single-Round Infection of Primary Human T Cells. Journal of Virology, 2002, 76, 4810-4821.	3.4	106
169	Soluble HIV-1 Env trimers in adjuvant elicit potent and diverse functional B cell responses in primates. Journal of Experimental Medicine, 2010, 207, 2003-2017.	8.5	106
170	Relationship between Antibody 2F5 Neutralization of HIV-1 and Hydrophobicity of Its Heavy Chain Third Complementarity-Determining Region. Journal of Virology, 2010, 84, 2955-2962.	3.4	106
171	Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Science Translational Medicine, 2017, 9, .	12.4	106
172	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	28.9	106
173	De novo identification of VRC01 class HIV-1–neutralizing antibodies by next-generation sequencing of B-cell transcripts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4088-97.	7.1	105
174	Safety, pharmacokinetics, and immunological activities of multiple intravenous or subcutaneous doses of an anti-HIV monoclonal antibody, VRC01, administered to HIV-uninfected adults: Results of a phase 1 randomized trial. PLoS Medicine, 2017, 14, e1002435.	8.4	104
175	Prevalence of genotypic and phenotypic resistance to anti-retroviral drugs in a cohort of therapy-naÃ ⁻ ve HIV-1 infected US military personnel. Aids, 2000, 14, 1009-1015.	2.2	103
176	Novel vaccine technologies for the 21st century. Nature Reviews Immunology, 2020, 20, 87-88.	22.7	103
177	Characterization of Human Immunodeficiency Virus Type 1 Monomeric and Trimeric gp120 Glycoproteins Stabilized in the CD4-Bound State: Antigenicity, Biophysics, and Immunogenicity. Journal of Virology, 2007, 81, 5579-5593.	3.4	101
178	Neutralizing Antibodies Elicited by Immunization of Monkeys with DNA Plasmids and Recombinant Adenoviral Vectors Expressing Human Immunodeficiency Virus Type 1 Proteins. Journal of Virology, 2005, 79, 771-779.	3.4	100
179	Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 8334-8345.	3.4	100
180	Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody mAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. Lancet, The, 2019, 393, 889-898.	13.7	99

#	Article	IF	CITATIONS
181	Polyvalent HIV-1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology, 2006, 350, 34-47.	2.4	98
182	Antibody-Dependent Cellular Cytotoxicity against Primary HIV-Infected CD4 ⁺ T Cells Is Directly Associated with the Magnitude of Surface IgG Binding. Journal of Virology, 2012, 86, 8672-8680.	3.4	97
183	Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. Cell Reports, 2017, 21, 3681-3690.	6.4	97
184	A Monoclonal Antibody for Malaria Prevention. New England Journal of Medicine, 2021, 385, 803-814.	27.0	95
185	Antibody Fc effector functions and IgG3 associate with decreased HIV-1 risk. Journal of Clinical Investigation, 2019, 129, 4838-4849.	8.2	95
186	Broad Neutralization of Human Immunodeficiency Virus Type 1 Mediated by Plasma Antibodies against the gp41 Membrane Proximal External Region. Journal of Virology, 2009, 83, 11265-11274.	3.4	93
187	An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1. Journal of Clinical Investigation, 2014, 124, 1835-1843.	8.2	93
188	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	12.4	93
189	Sustained Delivery of a Broadly Neutralizing Antibody in Nonhuman Primates Confers Long-Term Protection against Simian/Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 5895-5903.	3.4	92
190	The quest for an antibodyâ€based <scp>HIV</scp> vaccine. Immunological Reviews, 2017, 275, 5-10.	6.0	91
191	Structure-Based Design, Synthesis, and Characterization of Dual Hotspot Small-Molecule HIV-1 Entry Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 4382-4396.	6.4	90
192	Activation and lysis of human CD4 cells latently infected with HIV-1. Nature Communications, 2015, 6, 8447.	12.8	88
193	A Meta-analysis of Passive Immunization Studies Shows that Serum-Neutralizing Antibody Titer Associates with Protection against SHIV Challenge. Cell Host and Microbe, 2019, 26, 336-346.e3.	11.0	88
194	Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. MBio, 2019, 10, .	4.1	88
195	Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Science Translational Medicine, 2017, 9, .	12.4	87
196	Mechanism of Human Immunodeficiency Virus Type 1 Resistance to Monoclonal Antibody b12 That Effectively Targets the Site of CD4 Attachment. Journal of Virology, 2009, 83, 10892-10907.	3.4	86
197	Antibodies VRC01 and 10E8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-Framework Regions Substantially Reverted to Germline. Journal of Immunology, 2014, 192, 1100-1106.	0.8	86
198	Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity, 2016, 44, 939-950.	14.3	85

#	Article	IF	CITATIONS
199	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	14.3	85
200	Protection against SARS-CoV-2 Beta variant in mRNA-1273 vaccine–boosted nonhuman primates. Science, 2021, 374, 1343-1353.	12.6	83
201	Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation. Frontiers in Immunology, 2017, 8, 537.	4.8	82
202	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	3.4	81
203	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	12.4	81
204	Cross-Reactive HIV-1-Neutralizing Human Monoclonal Antibodies Identified from a Patient with 2F5-Like Antibodies. Journal of Virology, 2011, 85, 11401-11408.	3.4	80
205	Neutralizing Monoclonal Antibodies Block Human Immunodeficiency Virus Type 1 Infection of Dendritic Cells and Transmission to T Cells. Journal of Virology, 1998, 72, 9788-9794.	3.4	80
206	A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nature Medicine, 2021, 27, 2234-2245.	30.7	80
207	Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj5413.	12.4	79
208	Human Immunodeficiency Virus Type 1 Neutralizing Antibody Serotyping Using Serum Pools and an Infectivity Reduction Assay. AIDS Research and Human Retroviruses, 1996, 12, 1319-1328.	1.1	77
209	Analysis of immunoglobulin transcripts and hypermutation following SHIVAD8 infection and protein-plus-adjuvant immunization. Nature Communications, 2015, 6, 6565.	12.8	77
210	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	14.3	77
211	A Short Segment of the HIV-1 gp120 V1/V2 Region Is a Major Determinant of Resistance to V1/V2 Neutralizing Antibodies. Journal of Virology, 2012, 86, 8319-8323.	3.4	76
212	Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nature Communications, 2017, 8, 1732.	12.8	76
213	Selection Pressure on HIV-1 Envelope by Broadly Neutralizing Antibodies to the Conserved CD4-Binding Site. Journal of Virology, 2012, 86, 5844-5856.	3.4	75
214	Impact of Clade, Geography, and Age of the Epidemic on HIV-1 Neutralization by Antibodies. Journal of Virology, 2014, 88, 12623-12643.	3.4	75
215	Novel Vaccine Technologies. JAMA - Journal of the American Medical Association, 2018, 319, 1431.	7.4	73
216	Safety and efficacy of VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet HIV,the, 2019, 6, e297-e306.	4.7	73

#	Article	IF	CITATIONS
217	Most rhesus macaques infected with the CCR5-tropic SHIV _{AD8} generate cross-reactive antibodies that neutralize multiple HIV-1 strains. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19769-19774.	7.1	72
218	HIV-1 Neutralization Coverage Is Improved by Combining Monoclonal Antibodies That Target Independent Epitopes. Journal of Virology, 2012, 86, 3393-3397.	3.4	71
219	DNA Vaccine Delivered by a Needle-Free Injection Device Improves Potency of Priming for Antibody and CD8+ T-Cell Responses after rAd5 Boost in a Randomized Clinical Trial. PLoS ONE, 2013, 8, e59340.	2.5	71
220	Somatic populations of PGT135–137 HIV-1-neutralizing antibodies identified by 454 pyrosequencing and bioinformatic. Frontiers in Microbiology, 2012, 3, 315.	3.5	70
221	Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1–4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12265-12270.	7.1	70
222	Structural Survey of Broadly Neutralizing Antibodies Targeting the HIV-1 Env Trimer Delineates Epitope Categories and Characteristics of Recognition. Structure, 2019, 27, 196-206.e6.	3.3	69
223	Selective Modification of Variable Loops Alters Tropism and Enhances Immunogenicity of Human Immunodeficiency Virus Type 1 Envelope. Journal of Virology, 2004, 78, 4029-4036.	3.4	68
224	Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. Journal of Virology, 2016, 90, 1321-1332.	3.4	68
225	Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathogens, 2018, 14, e1006860.	4.7	68
226	Effect of a Chikungunya Virus–Like Particle Vaccine on Safety and Tolerability Outcomes. JAMA - Journal of the American Medical Association, 2020, 323, 1369.	7.4	68
227	Antibody-Dependent Cell-Mediated Cytotoxicity in Simian Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Virology, 2011, 85, 6906-6912.	3.4	67
228	SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts. Frontiers in Immunology, 2016, 7, 372.	4.8	67
229	Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial. Lancet HIV,the, 2019, 6, e667-e679.	4.7	67
230	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	11.0	66
231	Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nature Communications, 2018, 9, 877.	12.8	65
232	Two-Component Ferritin Nanoparticles for Multimerization of Diverse Trimeric Antigens. ACS Infectious Diseases, 2018, 4, 788-796.	3.8	65
233	Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nature Medicine, 2022, 28, 383-391.	30.7	65
234	Diverse HIV-1 subtypes and clinical, laboratory and behavioral factors in a recently infected US military cohort. Aids, 2003, 17, 2521-2527.	2.2	64

#	Article	IF	CITATIONS
235	Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains. Journal of Virology, 2013, 87, 10047-10058.	3.4	64
236	Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell, 2022, 185, 113-130.e15.	28.9	64
237	Robust Neutralizing Antibodies Elicited by HIV-1 JRFL Envelope Glycoprotein Trimers in Nonhuman Primates. Journal of Virology, 2013, 87, 13239-13251.	3.4	63
238	Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. Journal of Virology, 2016, 90, 5899-5914.	3.4	62
239	Basis and Statistical Design of the Passive HIV-1 Antibody Mediated Prevention (AMP) Test-of-Concept Efficacy Trials. Statistical Communications in Infectious Diseases, 2017, 9, .	0.2	62
240	HIV-1 Neutralizing Antibodies Display Dual Recognition of the Primary and Coreceptor Binding Sites and Preferential Binding to Fully Cleaved Envelope Glycoproteins. Journal of Virology, 2012, 86, 11231-11241.	3.4	61
241	Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity, 2018, 49, 1162-1174.e8.	14.3	61
242	Vaccines for the prevention of HIV-1 disease. Current Opinion in Immunology, 2001, 13, 489-494.	5.5	59
243	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. Cell Reports, 2020, 33, 108322.	6.4	59
244	Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a Quaternary-Structure-Specific Antibody. Journal of Virology, 2016, 90, 2740-2755.	3.4	58
245	B Cell Recognition of the Conserved HIV-1 Co-Receptor Binding Site Is Altered by Endogenous Primate CD4. PLoS Pathogens, 2008, 4, e1000171.	4.7	57
246	HIV Type 1 Env Precursor Cleavage State Affects Recognition by Both Neutralizing and Nonneutralizing gp41 Antibodies. AIDS Research and Human Retroviruses, 2011, 27, 877-887.	1.1	57
247	Anti-HIV B Cell Lines as Candidate Vaccine Biosensors. Journal of Immunology, 2012, 189, 4816-4824.	0.8	57
248	Structure-Based Design and Synthesis of an HIV-1 Entry Inhibitor Exploiting X-ray and Thermodynamic Characterization. ACS Medicinal Chemistry Letters, 2013, 4, 338-343.	2.8	56
249	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	4.7	56
250	Single-Cell and Deep Sequencing of IgG-Switched Macaque B Cells Reveal a Diverse Ig Repertoire following Immunization. Journal of Immunology, 2014, 192, 3637-3644.	0.8	55
251	Human Immunodeficiency Virus Type 1 Env Trimer Immunization of Macaques and Impact of Priming with Viral Vector or Stabilized Core Protein. Journal of Virology, 2009, 83, 540-551.	3.4	54
252	Virus-Specific Cellular Immune Correlates of Survival in Vaccinated Monkeys after Simian Immunodeficiency Virus Challenge. Journal of Virology, 2006, 80, 10950-10956.	3.4	53

#	Article	IF	CITATIONS
253	Fc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18754-18763.	7.1	53
254	Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Reports, 2020, 31, 107488.	6.4	53
255	Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody. Cell Reports, 2018, 22, 1798-1809.	6.4	52
256	No Evidence for Consistent Virus-Specific Immunity in Simian Immunodeficiency Virus-Exposed, Uninfected Rhesus Monkeys. Journal of Virology, 2007, 81, 12368-12374.	3.4	51
257	Targeted Isolation of Antibodies Directed against Major Sites of SIV Env Vulnerability. PLoS Pathogens, 2016, 12, e1005537.	4.7	51
258	In vitro reconstitution of B cell receptor–antigen interactions to evaluate potential vaccine candidates. Nature Protocols, 2016, 11, 193-213.	12.0	51
259	Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathogens, 2017, 13, e1006148.	4.7	51
260	Cellular Immunity Elicited by Human Immunodeficiency Virus Type 1/ Simian Immunodeficiency Virus DNA Vaccination Does Not Augment the Sterile Protection Afforded by Passive Infusion of Neutralizing Antibodies. Journal of Virology, 2003, 77, 10348-10356.	3.4	50
261	Biochemically Defined HIV-1 Envelope Glycoprotein Variant Immunogens Display Differential Binding and Neutralizing Specificities to the CD4-binding Site. Journal of Biological Chemistry, 2012, 287, 5673-5686.	3.4	50
262	Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry. Nature Communications, 2019, 10, 47.	12.8	50
263	Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Science Advances, 2020, 6, eaba5068.	10.3	50
264	HIV-1: nature's master of disguise. Nature Medicine, 2003, 9, 393-394.	30.7	49
265	Dendritic Cells Are Less Susceptible to Human Immunodeficiency Virus Type 2 (HIV-2) Infection than to HIV-1 Infection. Journal of Virology, 2007, 81, 13486-13498.	3.4	49
266	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	12.6	49
267	Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	49
268	Elicitation of Simian Immunodeficiency Virus-Specific Cytotoxic T Lymphocytes in Mucosal Compartments of Rhesus Monkeys by Systemic Vaccination. Journal of Virology, 2002, 76, 11484-11490.	3.4	47
269	Neutralizing antibodies against HIV-1: can we elicit them with vaccines and how much do we need?. Current Opinion in HIV and AIDS, 2009, 4, 347-351.	3.8	47
270	Antibody-Dependent Cell-Mediated Viral Inhibition Emerges after Simian Immunodeficiency Virus SIVmac251 Infection of Rhesus Monkeys Coincident with gp140-Binding Antibodies and Is Effective against Neutralization-Resistant Viruses. Journal of Virology, 2011, 85, 5465-5475.	3.4	47

#	Article	IF	CITATIONS
271	Pathogenicity and Mucosal Transmissibility of the R5-Tropic Simian/Human Immunodeficiency Virus SHIV _{AD8} in Rhesus Macaques: Implications for Use in Vaccine Studies. Journal of Virology, 2012, 86, 8516-8526.	3.4	47
272	The changing face of HIV vaccine research. Journal of the International AIDS Society, 2012, 15, 17407.	3.0	47
273	Crystal Structure of Human Antibody 2909 Reveals Conserved Features of Quaternary Structure-Specific Antibodies That Potently Neutralize HIV-1. Journal of Virology, 2011, 85, 2524-2535.	3.4	46
274	Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV. PLoS Pathogens, 2018, 14, e1007159.	4.7	46
275	Cross-Subtype Neutralizing Antibodies Induced in Baboons by a Subtype E gp120 Immunogen Based on an R5 Primary Human Immunodeficiency Virus Type 1 Envelope. Journal of Virology, 1999, 73, 4640-4650.	3.4	46
276	Influence of Novel CD4 Binding-Defective HIV-1 Envelope Glycoprotein Immunogens on Neutralizing Antibody and T-Cell Responses in Nonhuman Primates. Journal of Virology, 2010, 84, 1683-1695.	3.4	44
277	Thermoresponsive Polymer Nanoparticles Co-deliver RSV F Trimers with a TLR-7/8 Adjuvant. Bioconjugate Chemistry, 2016, 27, 2372-2385.	3.6	44
278	Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8. PLoS ONE, 2016, 11, e0157409.	2.5	44
279	Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nature Medicine, 2022, 28, 1288-1296.	30.7	44
280	Enhanced Exposure of the CD4-Binding Site to Neutralizing Antibodies by Structural Design of a Membrane-Anchored Human Immunodeficiency Virus Type 1 gp120 Domain. Journal of Virology, 2009, 83, 5077-5086.	3.4	43
281	The <i>TRIM5</i> Gene Modulates Penile Mucosal Acquisition of Simian Immunodeficiency Virus in Rhesus Monkeys. Journal of Virology, 2011, 85, 10389-10398.	3.4	43
282	Immunotypes of a Quaternary Site of HIV-1 Vulnerability and Their Recognition by Antibodies. Journal of Virology, 2011, 85, 4578-4585.	3.4	43
283	Hyperglycosylated Stable Core Immunogens Designed To Present the CD4 Binding Site Are Preferentially Recognized by Broadly Neutralizing Antibodies. Journal of Virology, 2014, 88, 14002-14016.	3.4	43
284	Accumulation of follicular CD8+ T cells in pathogenic SIV infection. Journal of Clinical Investigation, 2018, 128, 2089-2103.	8.2	43
285	Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8614-8619.	7.1	42
286	A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Science Translational Medicine, 2019, 11, .	12.4	42
287	Adjuvants and the vaccine response to the DS-Cav1-stabilized fusion glycoprotein of respiratory syncytial virus. PLoS ONE, 2017, 12, e0186854.	2.5	42
288	Cross-Reactive Human Immunodeficiency Virus Type 1-Neutralizing Human Monoclonal Antibody That Recognizes a Novel Conformational Epitope on gp41 and Lacks Reactivity against Self-Antigens. Journal of Virology, 2008, 82, 6869-6879.	3.4	41

#	Article	IF	CITATIONS
289	Structural Basis for HIV-1 Neutralization by 2F5-Like Antibodies m66 and m66.6. Journal of Virology, 2014, 88, 2426-2441.	3.4	41
290	Consistent elicitation of cross-clade HIV-neutralizing responses achieved in guinea pigs after fusion peptide priming by repetitive envelope trimer boosting. PLoS ONE, 2019, 14, e0215163.	2.5	41
291	Immunogenicity of Constrained Monoclonal Antibody A32-Human Immunodeficiency Virus (HIV) Env gp120 Complexes Compared to That of Recombinant HIV Type 1 gp120 Envelope Glycoproteins. Journal of Virology, 2004, 78, 5270-5278.	3.4	40
292	Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Virology, 2017, 91, .	3.4	40
293	N332-Directed Broadly Neutralizing Antibodies Use Diverse Modes of HIV-1 Recognition: Inferences from Heavy-Light Chain Complementation of Function. PLoS ONE, 2013, 8, e55701.	2.5	38
294	A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus. PLoS ONE, 2015, 10, e0128779.	2.5	38
295	Protective Efficacy of Broadly Neutralizing Antibodies with Incomplete Neutralization Activity against Simian-Human Immunodeficiency Virus in Rhesus Monkeys. Journal of Virology, 2017, 91, .	3.4	38
296	Safety, Tolerability, and Pharmacokinetics of the Broadly Neutralizing Human Immunodeficiency Virus (HIV)-1 Monoclonal Antibody VRC01 in HIV-Exposed Newborn Infants. Journal of Infectious Diseases, 2020, 222, 628-636.	4.0	38
297	Safety, tolerability, and immunogenicity of the respiratory syncytial virus prefusion F subunit vaccine DS-Cav1: a phase 1, randomised, open-label, dose-escalation clinical trial. Lancet Respiratory Medicine,the, 2021, 9, 1111-1120.	10.7	38
298	Lysis of Human Immunodeficiency Virus Type 1 by a Specific Secreted Human Phospholipase A 2. Journal of Virology, 2007, 81, 1444-1450.	3.4	37
299	Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathogens, 2018, 14, e1007395.	4.7	37
300	Single-dose bNAb cocktail or abbreviated ART post-exposure regimens achieve tight SHIV control without adaptive immunity. Nature Communications, 2020, 11, 70.	12.8	37
301	Vaccination with prefusion-stabilized respiratory syncytial virus fusion protein induces genetically and antigenically diverse antibody responses. Immunity, 2021, 54, 769-780.e6.	14.3	37
302	Neutralizing Antibodies from the Sera of Human Immunodeficiency Virus Type 1-Infected Individuals Bind to Monomeric gp120 and Oligomeric gp140. Journal of Virology, 1998, 72, 9656-9667.	3.4	36
303	The modern era of HIV-1 vaccine development. Science, 2015, 349, 139-140.	12.6	36
304	HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1007431.	4.7	36
305	Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development. Frontiers in Immunology, 2020, 11, 842.	4.8	36
306	Biochemical and Immunogenic Characterization of Soluble Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trimers Expressed by Semliki Forest Virus. Journal of Virology, 2005, 79, 10902-10914.	3.4	35

#	Article	IF	CITATIONS
307	Effects of Darwinian Selection and Mutability on Rate of Broadly Neutralizing Antibody Evolution during HIV-1 Infection. PLoS Computational Biology, 2016, 12, e1004940.	3.2	35
308	Multiple Antibody Lineages in One Donor Target the Glycan-V3 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary Binding. Journal of Virology, 2016, 90, 10574-10586.	3.4	35
309	Somatic Hypermutation-Induced Changes in the Structure and Dynamics of HIV-1 Broadly Neutralizing Antibodies. Structure, 2016, 24, 1346-1357.	3.3	35
310	Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations. Nature Communications, 2019, 10, 2898.	12.8	35
311	Preservation of Functional Virus-Specific Memory CD8+ T Lymphocytes in Vaccinated, Simian Human Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Immunology, 2006, 176, 5338-5345.	0.8	34
312	BLyS-Mediated Modulation of Naive B Cell Subsets Impacts HIV Env-Induced Antibody Responses. Journal of Immunology, 2012, 188, 6018-6026.	0.8	34
313	Outer Domain of HIV-1 gp120: Antigenic Optimization, Structural Malleability, and Crystal Structure with Antibody VRC-PG04. Journal of Virology, 2013, 87, 2294-2306.	3.4	34
314	Is It Possible to Develop a "Universal―Influenza Virus Vaccine?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029413.	5.5	34
315	Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nature Medicine, 2022, 28, 1022-1030.	30.7	34
316	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	4.7	33
317	Antibodyomics: bioinformatics technologies for understanding Bâ€cell immunity to <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 108-128.	6.0	32
318	Gene-Based Vaccination with a Mismatched Envelope Protects against Simian Immunodeficiency Virus Infection in Nonhuman Primates. Journal of Virology, 2012, 86, 7760-7770.	3.4	31
319	Herpes Simplex Virus Vaccines— Why Don't Antibodies Protect?. JAMA - Journal of the American Medical Association, 1999, 282, 379.	7.4	30
320	Accurate Prediction for Antibody Resistance of Clinical HIV-1 Isolates. Scientific Reports, 2019, 9, 14696.	3.3	30
321	Distinct neutralizing antibody correlates of protection among related Zika virus vaccines identify a role for antibody quality. Science Translational Medicine, 2020, 12, .	12.4	30
322	Structural Basis for Highly Effective HIV-1 Neutralization by CD4-Mimetic Miniproteins Revealed by 1.5ÂÃ Cocrystal Structure of gp120 and M48U1. Structure, 2013, 21, 1018-1029.	3.3	29
323	Glycosylation of the core of the HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity. Journal of Biological Chemistry, 2017, 292, 10197-10219.	3.4	29
324	Specific Antibody Responses to Vaccination with Bivalent CM235/SF2 gp120: Detection of Homologous and Heterologous Neutralizing Antibody to Subtype E (CRF01.AE) HIV Type 1. AIDS Research and Human Retroviruses, 2003, 19, 807-816.	1.1	27

#	Article	IF	CITATIONS
325	Dysfunction of Simian Immunodeficiency Virus/Simian Human Immunodeficiency Virus-Induced IL-2 Expression by Central Memory CD4+ T Lymphocytes. Journal of Immunology, 2005, 174, 4753-4760.	0.8	27
326	Vaccine-Elicited Memory Cytotoxic T Lymphocytes Contribute to Mamu-A*01-Associated Control of Simian/Human Immunodeficiency Virus 89.6P Replication in Rhesus Monkeys. Journal of Virology, 2005, 79, 4580-4588.	3.4	27
327	Improvement of antibody functionality by structure-guided paratope engraftment. Nature Communications, 2019, 10, 721.	12.8	27
328	Immune checkpoint modulation enhances HIV-1 antibody induction. Nature Communications, 2020, 11, 948.	12.8	27
329	Safety, Tolerability, and Pharmacokinetics of a Long-Acting Broadly Neutralizing Human Immunodeficiency Virus Type 1 (HIV-1) Monoclonal Antibody VRC01LS in HIV-1–Exposed Newborn Infants. Journal of Infectious Diseases, 2021, 224, 1916-1924.	4.0	27
330	Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120. PLoS ONE, 2017, 12, e0185959.	2.5	27
331	Selective Increases in HIV-Specific Neutralizing Antibody and Partial Reconstitution of Cellular Immune Responses during Prolonged, Successful Drug Therapy of HIV Infection. AIDS Research and Human Retroviruses, 2001, 17, 1021-1034.	1.1	26
332	High-Resolution Longitudinal Study of HIV-1 Env Vaccine–Elicited B Cell Responses to the Virus Primary Receptor Binding Site Reveals Affinity Maturation and Clonal Persistence. Journal of Immunology, 2016, 196, 3729-3743.	0.8	26
333	Crystal Structure and Immunogenicity of the DS-Cav1-Stabilized Fusion Glycoprotein From Respiratory Syncytial Virus Subtype B. Pathogens and Immunity, 2019, 4, 294.	3.1	26
334	A Human Monoclonal Antibody Specific for the V3 Loop of HIV Type 1 Clade E Cross-Reacts with Other HIV Type 1 Clades. AIDS Research and Human Retroviruses, 1998, 14, 213-221.	1.1	25
335	Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas. MBio, 2015, 6, .	4.1	25
336	Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07-523LS and PGT121 in South African women: study protocol for the first-in-human CAPRISA 012B phase I clinical trial. BMJ Open, 2020, 10, e042247.	1.9	25
337	Diverse Antibody Genetic and Recognition Properties Revealed following HIV-1 Envelope Glycoprotein Immunization. Journal of Immunology, 2015, 194, 5903-5914.	0.8	24
338	Newcastle Disease Virus-Like Particles Displaying Prefusion-Stabilized SARS-CoV-2 Spikes Elicit Potent Neutralizing Responses. Vaccines, 2021, 9, 73.	4.4	24
339	Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors. PLoS ONE, 2018, 13, e0193773.	2.5	24
340	Effects of Antibody on Viral Kinetics in Simian/Human Immunodeficiency Virus Infection: Implications for Vaccination. Journal of Virology, 2004, 78, 5520-5522.	3.4	23
341	HIV-1 Receptor Binding Site-Directed Antibodies Using a VH1-2 Gene Segment Orthologue Are Activated by Env Trimer Immunization. PLoS Pathogens, 2014, 10, e1004337.	4.7	23
342	Extensive dissemination and intraclonal maturation of HIV Env vaccine-induced B cell responses. Journal of Experimental Medicine, 2020, 217, .	8.5	23

#	Article	IF	CITATIONS
343	VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage. Cell Host and Microbe, 2020, 27, 531-543.e6.	11.0	23
344	Mining the B Cell Repertoire for Broadly Neutralizing Monoclonal Antibodies to HIV-1. Cell Host and Microbe, 2009, 6, 292-294.	11.0	22
345	Glycoengineering HIV-1 Env creates â€~supercharged' and â€~hybrid' glycans to increase neutralizing antibody potency, breadth and saturation. PLoS Pathogens, 2018, 14, e1007024.	4.7	22
346	Induction of HIV Type 1 Neutralizing and <i>env</i> -CD4 Blocking Antibodies by Immunization with Genetically Engineered HIV Type 1-Like Particles Containing Unprocessed gp160 Glycoproteins. AIDS Research and Human Retroviruses, 1995, 11, 1187-1195.	1.1	21
347	Chimeric Fusion (F) and Attachment (G) Glycoprotein Antigen Delivery by mRNA as a Candidate Nipah Vaccine. Frontiers in Immunology, 2021, 12, 772864.	4.8	21
348	Mathematical modeling to reveal breakthrough mechanisms in the HIV Antibody Mediated Prevention (AMP) trials. PLoS Computational Biology, 2020, 16, e1007626.	3.2	20
349	Interprotomer disulfide-stabilized variants of the human metapneumovirus fusion glycoprotein induce high titer-neutralizing responses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
350	Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Reports, 2022, 38, 110199.	6.4	19
351	Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. PLoS ONE, 2022, 17, e0268767.	2.5	18
352	An HIV-1 Env–Antibody Complex Focuses Antibody Responses to Conserved Neutralizing Epitopes. Journal of Immunology, 2016, 197, 3982-3998.	0.8	17
353	Modeling cumulative overall prevention efficacy for the VRC01 phase 2b efficacy trials. Human Vaccines and Immunotherapeutics, 2018, 14, 2116-2127.	3.3	17
354	Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development. Vaccine, 2015, 33, 7344-7351.	3.8	16
355	Delayed vaginal SHIV infection in VRC01 and anti-α4β7 treated rhesus macaques. PLoS Pathogens, 2019, 15, e1007776.	4.7	16
356	Comparison of adjuvants to optimize influenza neutralizing antibody responses. Vaccine, 2019, 37, 6208-6220.	3.8	16
357	High throughput HIV-1 microneutralization assay. Protocol Exchange, 0, , .	0.3	16
358	Immune Monitoring Reveals Fusion Peptide Priming to Imprint Cross-Clade HIV-Neutralizing Responses with a Characteristic Early B Cell Signature. Cell Reports, 2020, 32, 107981.	6.4	15
359	Safety and immunogenicity of a trivalent virus-like particle vaccine against western, eastern, and Venezuelan equine encephalitis viruses: a phase 1, open-label, dose-escalation, randomised clinical trial. Lancet Infectious Diseases, The, 2022, 22, 1210-1220.	9.1	15
360	Pharmacokinetics and predicted neutralisation coverage of VRC01 in HIV-uninfected participants of the Antibody Mediated Prevention (AMP) trials. EBioMedicine, 2021, 64, 103203.	6.1	14

#	Article	IF	CITATIONS
361	Safety and Pharmacokinetics of Monoclonal Antibodies VRC07-523LS and PGT121 Administered Subcutaneously for Human Immunodeficiency Virus Prevention. Journal of Infectious Diseases, 2022, 226, 510-520.	4.0	13
362	Safety and immunogenicity of an HIV-1 prefusion-stabilized envelope trimer (Trimer 4571) vaccine in healthy adults: A first-in-human open-label, randomized, dose-escalation, phase 1 clinical trial. EClinicalMedicine, 2022, 48, 101477.	7.1	13
363	Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure, 2022, 30, 1233-1244.e7.	3.3	13
364	Assessing the safety and pharmacokinetics of the monoclonal antibodies, VRC07-523LS and PGT121 in HIV negative women in South Africa: study protocol for the CAPRISA 012A randomised controlled phase I trial. BMJ Open, 2019, 9, e030283.	1.9	12
365	Virus-Like Particle Based Vaccines Elicit Neutralizing Antibodies against the HIV-1 Fusion Peptide. Vaccines, 2020, 8, 765.	4.4	12
366	A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention. MAbs, 2021, 13, 1946918.	5.2	11
367	Blocking α ₄ β ₇ integrin delays viral rebound in SHIV _{SF162P3} -infected macaques treated with anti-HIV broadly neutralizing antibodies. Science Translational Medicine, 2021, 13, .	12.4	11
368	SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity. Journal of Biological Chemistry, 2021, 297, 101127.	3.4	9
369	Antigenic analysis of the HIV-1 envelope trimer implies small differences between structural states 1 and 2. Journal of Biological Chemistry, 2022, 298, 101819.	3.4	9
370	Improved delivery of broadly neutralizing antibodies by nanocapsules suppresses SHIV infection in the CNS of infant rhesus macaques. PLoS Pathogens, 2021, 17, e1009738.	4.7	7
371	Elicitation of pneumovirus-specific B cell responses by a prefusion-stabilized respiratory syncytial virus F subunit vaccine. Science Translational Medicine, 2022, 14, .	12.4	7
372	Characterization of the Neutralizing Antibody Response in a Case of Genetically Linked HIV Superinfection. Journal of Infectious Diseases, 2018, 217, 1530-1534.	4.0	6
373	Model Informed Development of VRC01 in Newborn Infants Using a Population Pharmacokinetics Approach. Clinical Pharmacology and Therapeutics, 2021, 109, 184-192.	4.7	6
374	Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathogens, 2022, 18, e1010574.	4.7	6
375	Structurally related but genetically unrelated antibody lineages converge on an immunodominant HIV-1 Env neutralizing determinant following trimer immunization. PLoS Pathogens, 2021, 17, e1009543.	4.7	5
376	HIV-1 gp120–CD4-Induced Antibody Complex Elicits CD4 Binding Site–Specific Antibody Response in Mice. Journal of Immunology, 2020, 204, 1543-1561.	0.8	4
377	Development of Neutralization Breadth against Diverse HIVâ€∎ by Increasing Ab–Ag Interface on V2. Advanced Science, 2022, , 2200063.	11.2	3
378	HIV Immunology Goes Out On a Limb. Immunity, 2016, 44, 1088-1090.	14.3	2

#	Article	IF	CITATIONS
379	Editorial overview: Vaccines: Vaccines for cancer and infectious diseases. Current Opinion in Immunology, 2015, 35, v-vii.	5.5	1
380	Concordance of immunological events between intrarectal and intravenous SHIVAD8-EO infection when assessed by Fiebig-equivalent staging. Journal of Clinical Investigation, 2021, 131, .	8.2	1
381	Title is missing!. , 2020, 16, e1007626.		0
382	Title is missing!. , 2020, 16, e1007626.		0
383	Title is missing!. , 2020, 16, e1007626.		0
384	Title is missing!. , 2020, 16, e1007626.		0