Juan Pedro Martinez-Barbera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nature Genetics, 1998, 19, 125-133.	21.4	719
2	mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nature Cell Biology, 2015, 17, 1205-1217.	10.3	552
3	The Cell and Molecular Basis of Mechanical, Cold, and Inflammatory Pain. Science, 2008, 321, 702-705.	12.6	419
4	Heterozygous Mutations of OTX2 Cause Severe Ocular Malformations. American Journal of Human Genetics, 2005, 76, 1008-1022.	6.2	266
5	Sox2+ Stem/Progenitor Cells in the Adult Mouse Pituitary Support Organ Homeostasis and Have Tumor-Inducing Potential. Cell Stem Cell, 2013, 13, 433-445.	11.1	264
6	Increased Wingless (<i>Wnt</i>) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11482-11487.	7.1	260
7	Craniopharyngioma. Nature Reviews Disease Primers, 2019, 5, 75.	30.5	255
8	Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Developmental Biology, 2006, 290, 44-56.	2.0	248
9	Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development (Cambridge), 2004, 131, 797-806.	2.5	235
10	Over- and Underdosage of SOX3 Is Associated with Infundibular Hypoplasia and Hypopituitarism. American Journal of Human Genetics, 2005, 76, 833-849.	6.2	223
11	In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis, 2005, 43, 129-135.	1.6	218
12	HOIP Deficiency Causes Embryonic Lethality by Aberrant TNFR1-Mediated Endothelial Cell Death. Cell Reports, 2014, 9, 153-165.	6.4	217
13	Cardiac glycosides are broad-spectrum senolytics. Nature Metabolism, 2019, 1, 1074-1088.	11.9	207
14	Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nature Genetics, 2012, 44, 1375-1381.	21.4	169
15	Temporal regulation of a <i>paired</i> -like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes and Development, 2001, 15, 3193-3207.	5.9	168
16	Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathologica, 2012, 124, 259-271.	7.7	164
17	SOX2 Plays a Critical Role in the Pituitary, Forebrain, and Eye during Human Embryonic Development. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1865-1873.	3.6	154
18	Paracrine roles of cellular senescence in promoting tumourigenesis. British Journal of Cancer, 2018, 118, 1283-1288.	6.4	125

#	Article	IF	CITATIONS
19	Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage. Development (Cambridge), 2007, 134, 2349-2358.	2.5	120
20	Cloning and expression of three members of the zebrafish Bmp family: Bmp2a, Bmp2b and Bmp4. Gene, 1997, 198, 53-59.	2.2	119
21	Defining the Integration Capacity of Embryonic Stem Cell-Derived Photoreceptor Precursors. Stem Cells, 2012, 30, 1424-1435.	3.2	119
22	<i>Cited2</i> is required both for heart morphogenesis and establishment of the left-right axis in mouse development. Development (Cambridge), 2005, 132, 1337-1348.	2.5	113
23	Novel <i>FGF8</i> Mutations Associated with Recessive Holoprosencephaly, Craniofacial Defects, and Hypothalamo-Pituitary Dysfunction. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1709-E1718.	3.6	113
24	Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathologica, 2018, 135, 757-777.	7.7	106
25	Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development (Cambridge), 2001, 128, 4789-4800.	2.5	106
26	New outlook on the diagnosis, treatment and follow-up of childhood-onset craniopharyngioma. Nature Reviews Endocrinology, 2017, 13, 299-312.	9.6	105
27	The Homeobox Gene Hesx1 Is Required in the Anterior Neural Ectoderm for Normal Forebrain Formation. Developmental Biology, 2000, 223, 422-430.	2.0	101
28	Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta. Developmental Biology, 2006, 294, 67-82.	2.0	101
29	Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon. Development Genes and Evolution, 1998, 208, 431-439.	0.9	96
30	Neuropathy target esterase impairments cause Oliver–McFarlane and Laurence–Moon syndromes. Journal of Medical Genetics, 2015, 52, 85-94.	3.2	91
31	P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nature Communications, 2018, 9, 1763.	12.8	91
32	The homeoprotein Hex is required for hemangioblast differentiation. Blood, 2003, 102, 2428-2435.	1.4	87
33	Tbx22 null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes. Human Molecular Genetics, 2009, 18, 4171-4179.	2.9	84
34	Galactoseâ€nodified duocarmycin prodrugs as senolytics. Aging Cell, 2020, 19, e13133.	6.7	84
35	SOX2 regulates the hypothalamic-pituitary axis at multiple levels. Journal of Clinical Investigation, 2012, 122, 3635-3646.	8.2	84
36	Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the epithelium and impact on photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18728-18733.	7.1	80

#	Article	IF	CITATIONS
37	Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nature Communications, 2017, 8, 1819.	12.8	76
38	Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain. Development (Cambridge), 2007, 134, 1499-1508.	2.5	72
39	PROKR2 Variants in Multiple Hypopituitarism with Pituitary Stalk Interruption. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1068-E1073.	3.6	68
40	ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies. Brain, 2013, 136, 3096-3105.	7.6	66
41	Targeted deletion of the novel cytoplasmic dynein mD2LIC disrupts the embryonic organiser, formation of the body axes and specification of ventral cell fates. Development (Cambridge), 2004, 131, 4999-5007.	2.5	62
42	Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Developmental Biology, 2008, 324, 322-333.	2.0	62
43	MAPK pathway activation in the embryonic pituitary results in stem cell compartment expansion, differentiation defects and provides insights into the pathogenesis of papillary craniopharyngioma. Development (Cambridge), 2017, 144, 2141-2152.	2.5	58
44	Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping. Neurolmage, 2011, 54, 769-778.	4.2	57
45	Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cellular and Molecular Life Sciences, 2013, 70, 3739-3752.	5.4	57
46	Molecular Analyses Reveal Inflammatory Mediators in the Solid Component and Cyst Fluid of Human Adamantinomatous Craniopharyngioma. Journal of Neuropathology and Experimental Neurology, 2017, 76, 779-788.	1.7	57
47	The Senescence-associated Secretory Phenotype Mediates Oncogene-induced Senescence in Pediatric Pilocytic Astrocytoma. Clinical Cancer Research, 2019, 25, 1851-1866.	7.0	55
48	Variations in <i>PROKR2</i> , But Not <i>PROK2</i> , Are Associated With Hypopituitarism and Septo-optic Dysplasia. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E547-E557.	3.6	54
49	Molecular and cellular pathogenesis of adamantinomatous craniopharyngioma. Neuropathology and Applied Neurobiology, 2015, 41, 721-732.	3.2	54
50	Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 7-17.	0.9	52
51	WDR11â€mediated Hedgehog signalling defects underlie a new ciliopathy related to Kallmann syndrome. EMBO Reports, 2018, 19, 269-289.	4.5	49
52	The use of recombinant gilthead sea bream (Sparus aurata) growth hormone for radioiodination and standard preparation in radioimmunoassay. Comparative Biochemistry and Physiology A, Comparative Physiology, 1995, 110, 335-340.	0.6	48
53	SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. Genes and Development, 2016, 30, 2187-2198.	5.9	48
54	Transcription factor 7-like 1 is involved in hypothalamo–pituitary axis development in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E548-57.	7.1	47

#	Article	IF	CITATIONS
55	Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism. DMM Disease Models and Mechanisms, 2008, 1, 241-254.	2.4	46
56	HESX1- and TCF3-mediated repression of Wnt/ \hat{l}^2 -catenin targets is required for normal development of the anterior forebrain. Development (Cambridge), 2011, 138, 4931-4942.	2.5	44
57	SOX2 haploinsufficiency is associated with slow progressing hypothalamoâ€pituitary tumours. Human Mutation, 2011, 32, 1376-1380.	2.5	43
58	Hypothalamic syndrome. Nature Reviews Disease Primers, 2022, 8, 24.	30.5	42
59	Getting your head around Hex and Hesx1: forebrain formation in mouse. International Journal of Developmental Biology, 2001, 45, 327-36.	0.6	41
60	<i>Otx</i> genes in the development and evolution of the vertebrate brain. International Journal of Developmental Neuroscience, 2001, 19, 353-363.	1.6	40
61	Stem/progenitor cells in pituitary organ homeostasis and tumourigenesis. Journal of Endocrinology, 2018, 236, R1-R13.	2.6	39
62	OTD/OTX2 functional equivalence depends on 5′ and 3′ UTR-mediated control ofOtx2mRNA for nucleo-cytoplasmic export and epiblast-restricted translation. Development (Cambridge), 2001, 128, 4801-4813.	2.5	39
63	<i>HESX1</i> : a novel gene implicated in a familial form of septoâ€optic dysplasia. Acta Paediatrica, International Journal of Paediatrics, 1999, 88, 49-54.	1.5	36
64	Imaging Invasion: Micro-CT imaging of adamantinomatous craniopharyngioma highlights cell type specific spatial relationships of tissue invasion. Acta Neuropathologica Communications, 2016, 4, 57.	5.2	36
65	Molecular pathology of adamantinomatous craniopharyngioma: review and opportunities for practice. Neurosurgical Focus, 2016, 41, E4.	2.3	36
66	Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma. Stem Cells, 2016, 34, 268-276.	3.2	36
67	Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nature Communications, 2014, 5, 4054.	12.8	35
68	Cloning of a somatolactin-encoding cDNA from sole (Solea senegalensis). Gene, 1994, 147, 227-230.	2.2	34
69	The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism. Clinical Endocrinology, 2015, 82, 728-738.	2.4	34
70	Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development (Cambridge), 2017, 144, 3289-3302.	2.5	34
71	Cell senescence in neuropathology: A focus on neurodegeneration and tumours. Neuropathology and Applied Neurobiology, 2021, 47, 359-378.	3.2	34
72	Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation. Scientific Reports, 2015, 5, 14479.	3.3	31

#	Article	IF	CITATIONS
73	Forebrain and midbrain development requires epiblast-restricted <i>Otx2</i> translational control mediated by its 3′ UTR. Development (Cambridge), 2001, 128, 2989-3000.	2.5	31
74	Cloning, Expression, and Characterization of a Recombinant Gilthead Seabream Growth Hormone. General and Comparative Endocrinology, 1994, 96, 179-188.	1.8	30
75	60 YEARS OF NEUROENDOCRINOLOGY: Biology of human craniopharyngioma: lessons from mouse models. Journal of Endocrinology, 2015, 226, T161-T172.	2.6	29
76	The paired-type homeobox gene Dmbx1 marks the midbrain and pretectum. Mechanisms of Development, 2002, 114, 213-217.	1.7	28
77	Tbx22null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes. Human Molecular Genetics, 2010, 19, 3103-3103.	2.9	26
78	Stem cells and their role in pituitary tumorigenesis. Molecular and Cellular Endocrinology, 2017, 445, 27-34.	3.2	26
79	SHH pathway inhibition is protumourigenic in adamantinomatous craniopharyngioma. Endocrine-Related Cancer, 2019, 26, 355-366.	3.1	24
80	<i>CTNNB1</i> mutations are clonal in adamantinomatous craniopharyngioma. Neuropathology and Applied Neurobiology, 2020, 46, 510-514.	3.2	21
81	Biological Behaviour of Craniopharyngiomas. Neuroendocrinology, 2020, 110, 797-804.	2.5	20
82	DNMT1 interacts with the developmental transcriptional repressor HESX1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 131-143.	4.1	18
83	Cloning of the sole (Solea senegalensis) growth hormone-encoding cDNA. Gene, 1994, 145, 237-240.	2.2	17
84	Novel application of luciferase assay for the inÂvitro functional assessment of KAL1 variants in three females with septo-optic dysplasia (SOD). Molecular and Cellular Endocrinology, 2015, 417, 63-72.	3.2	17
85	Molecular cloning of gilthead seabream (Sparus aurata) pituitary transcription factor GHF-1/Pit-1. Gene, 1997, 185, 87-93.	2.2	15
86	Molecular Genetics of Septo-Optic Dysplasia. Hormone Research in Paediatrics, 2000, 53, 26-33.	1.8	15
87	Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology. Brain Pathology, 2017, 27, 364-369.	4.1	15
88	Growth hormone as a function of age and dietary protein: energy ratio in a marine teleost, the gilthead sea bream (Sparus aurata). Growth Regulation, 1996, 6, 253-9.	0.5	15
89	Preclinical transgenic and patientâ€derived xenograft models recapitulate the radiological features of human adamantinomatous craniopharyngioma. Brain Pathology, 2018, 28, 475-483.	4.1	14
90	Bacterial Production and Purification of the Fish Pituitary Hormone Somatolactin. Protein Expression and Purification, 1996, 7, 389-394.	1.3	11

#	Article	IF	CITATIONS
91	Adamantinomatous craniopharyngioma as a model to understand paracrine and senescence-induced tumourigenesis. Cellular and Molecular Life Sciences, 2021, 78, 4521-4544.	5.4	10
92	Genetic Deletion of Hesx1 Promotes Exit from the Pluripotent State and Impairs Developmental Diapause. Stem Cell Reports, 2019, 13, 970-979.	4.8	9
93	NOA36/ZNF330 is a conserved cystein-rich protein with proapoptotic activity in human cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1876-1885.	4.1	8
94	Senescence drives non-cell autonomous tumorigenesis in the pituitary gland. Molecular and Cellular Oncology, 2018, 5, e1435180.	0.7	8
95	Conditional Dicer1 depletion using Chrnb4-Cre leads to cone cell death and impaired photopic vision. Scientific Reports, 2019, 9, 2314.	3.3	8
96	Forebrain and midbrain development requires epiblast-restricted Otx2 translational control mediated by its 3' UTR. Development (Cambridge), 2001, 128, 2989-3000.	2.5	8
97	Absence of SIX3 mutations in patients with congenital hypopituitarism. American Journal of Medical Genetics, Part A, 2009, 149A, 2874-2876.	1.2	5
98	Characterization of a novel <i>HESX1</i> mutation in a pediatric case of septoâ€optic dysplasia. Clinical Case Reports (discontinued), 2017, 5, 463-470.	0.5	4
99	The Pituitary Transcription Factor Ghf-1 /Pit-1: an Evolutionary Overview. Animal Biology, 1994, 45, 229-234.	0.4	3
100	Otx genes in evolution: are they involved in instructing the vertebrate brain morphology?. Journal of Anatomy, 2001, 199, 53-62.	1.5	3
101	Molecular profiling and preclinical targeted therapeutic testing in adamantinomatous craniopharyngioma. Lancet, The, 2017, 389, S22.	13.7	2
102	Pathophysiology and genetics in craniopharyngioma. , 2021, , 53-66.		2
103	Autoradiographic localization of growth hormone binding sites in Sparus aurata tissues using a recombinant gilthead seabream growth hormone. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1996, 114, 17-22.	0.5	1
104	The Future of Genomic Endocrinology. Frontiers in Endocrinology, 2011, 2, 11.	3.5	1
105	Adamantinomatous Craniopharyngioma: Genomics, Radiologic Findings, Clinical, and Prognosis. Contemporary Endocrinology, 2019, , 41-70.	0.1	1
106	Genetically Modified Mouse Models of Adamantinomatous Craniopharyngioma. , 2017, , 41-55.		1
107	Abstract 1804: Expression analysis of adamantinomatous craniopharyngioma suggests two subtypes associated withCTNNB1mutational frequency and highlights potential therapeutic targets. , 2016, , .		1

108 Mouse Models of Craniopharyngioma. , 2020, , 19-33.

7

#	Article	IF	CITATIONS
109	Role of Otx transcription factors in brain development. Advances in Developmental Biology and Biochemistry, 2003, 13, 207-250.	0.3	0
110	LGG-11. BH3-MIMETICS TARGETING BCL-XL SELECTIVELY IMPACT THE SENESCENT COMPARTMENT OF PILOCYTIC ASTROCYTOMA. Neuro-Oncology, 2021, 23, i33-i34.	1.2	0
111	Craniopharyngioma: Pathological and Molecular Aspects. , 2016, , 13-54.		0
112	Learning from cases: Analysis of two cases of craniopharyngioma from the 19th to the 21st centuries F1000Research, 2019, 8, 1544.	1.6	0
113	LGG-17. Preventing recurrence: targeting molecular mechanisms driving tumor growth rebound after MAPKi withdrawal in pediatric low-grade glioma. Neuro-Oncology, 2022, 24, i91-i91.	1.2	0
114	LGG-18. Inhibition of Bcl-xL targets the senescent compartment of pilocytic astrocytoma. Neuro-Oncology, 2022, 24, i91-i92.	1.2	0