Ida Lykke Fabricius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929372/publications.pdf

Version: 2024-02-01

74 1,612 papers citations

24 38
h-index g-index

74 74 all docs citations

74 times ranked 1172 citing authors

#	Article	IF	CITATIONS
1	Waterâ \in flooding and consolidation of reservoir chalk â \in " effect on porosity and Biot's coefficient. Geophysical Prospecting, 2021, 69, 495-513.	1.9	3
2	Effect of Temperature on Stiffness of Sandstones from the Deep North Sea Basin. Rock Mechanics and Rock Engineering, 2021, 54, 255-288.	5.4	8
3	Water weakening of soft and stiff outcrop chalk induced by electrical double layer disjoining pressure. International Journal of Rock Mechanics and Minings Sciences, 2021, 141, 104700.	5.8	2
4	Injection of Ca-depleted formation water in the Lower Triassic Bunter Sandstone Formation for seasonal heat storage in geothermal sandstone reservoirs: Effects on reservoir quality. Geothermics, 2021, 96, 102179.	3.4	5
5	Effect of electrostatic forces on the porosity of saturated mineral powder samples and implications for chalk strength. Geophysics, 2020, 85, MR37-MR50.	2.6	4
6	Porosity in chalk – roles of elastic strain and plastic strain. Sedimentology, 2020, 67, 3451-3470.	3.1	9
7	Phosphate removal by iron oxide-coated diatomite: Laboratory test of a new method for cleaning drainage water. Chemosphere, 2019, 222, 884-890.	8.2	19
8	Incorporating electrostatic effects into the effective stress relation â€" Insights from chalk experiments. Geophysics, 2018, 83, MR123-MR135.	2.6	19
9	Low field NMR surface relaxivity studies of chalk and argillaceous sandstones. Microporous and Mesoporous Materials, 2018, 269, 122-124.	4.4	9
10	Thermal conductivity of sandstones from Biot's coefficient. Geophysics, 2018, 83, D173-D185.	2.6	10
11	Effective stress on deep sedimentary formations under nonisothermal conditions. , 2018, , .		O
12	Interpretational challenges related to studies of chalk particle surfaces in scanning and transmission electron microscopy. Bulletin of the Geological Society of Denmark, 2018, 66, 151-165.	1.1	1
13	Permeability Estimation in Chalk Using NMR and a Modified Kozeny Equation. , 2017, , .		1
14	Elasticity and Density of Paleozoic Shales from Bornholm. , 2017, , .		1
15	How Pore Filling Shale Affects Elastic Wave Velocities in Fully and Partially Saturated Sandstone: Characterization, Measurement, and Modelling. , 2017, , .		O
16	Core Flooding Experiments and Reactive Transport Modeling of Seasonal Heat Storage in the Hot Deep Gassum Sandstone Formation. ACS Earth and Space Chemistry, 2017, 1, 251-260.	2.7	8
17	Effective stresses and shear failure pressure from in situ Biot's coefficient, Hejre Field, North Sea. Geophysical Prospecting, 2017, 65, 808-822.	1.9	8
18	Clay squirt: Local flow dispersion in shale-bearing sandstones. Geophysics, 2017, 82, MR51-MR63.	2.6	2

#	Article	IF	CITATIONS
19	Comparative analysis of experimental methods for quantification of small amounts of oil in water. Journal of Petroleum Science and Engineering, 2016, 147, 459-467.	4.2	12
20	New insight into the microtexture of chalks from NMR analysis. Marine and Petroleum Geology, 2016, 75, 252-271.	3.3	45
21	Production of Calcareous Nannofossil Ooze For Sedimentological Experiments. Journal of Sedimentary Research, 2015, 85, 1228-1237.	1.6	10
22	Fluid substitution in sandstone: Effective porosity or total porosity., 2015,,.		1
23	The effect of brine saturation on the elastic moduli of compacted clay. , 2015, , .		0
24	The effect of divalent ions on the elasticity and pore collapse of chalk evaluated from compressional wave velocity and low-field Nuclear Magnetic Resonance (NMR). Journal of Petroleum Science and Engineering, 2015, 136, 88-99.	4.2	13
25	Permeability in Rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis. Marine and Petroleum Geology, 2015, 64, 189-202.	3.3	76
26	Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well. Energy, 2015, 90, 1349-1359.	8.8	25
27	Different effects of temperature and salinity on permeability reduction by fines migration in Berea sandstone. Geothermics, 2015, 53, 225-235.	3.4	85
28	Determination of Matrix Pore Size Distribution in Fractured Clayey Till and Assessment of Matrix Migration of Dechlorinating Bacteria. Bioremediation Journal, 2014, 18, 295-308.	2.0	4
29	Modeling of the pressure propagation due to CO 2 injection and the effect of fault permeability in a case study of the Vedsted structure, Northern Denmark. International Journal of Greenhouse Gas Control, 2014, 28, 1-10.	4.6	6
30	Burial stress and elastic strain of carbonate rocks. Geophysical Prospecting, 2014, 62, 1327-1336.	1.9	22
31	Caprock compressibility and permeability and the consequences for pressure development in CO2 storage sites. International Journal of Greenhouse Gas Control, 2014, 22, 139-153.	4.6	22
32	The effect of hot water injection on sandstone permeability. Geothermics, 2014, 50, 155-166.	3.4	71
33	Permeability, compressibility and porosity of Jurassic shale from the Norwegian–Danish Basin. Petroleum Geoscience, 2014, 20, 257-281.	1.5	35
34	Porosity and sonic velocity depth trends of Eocene chalk in Atlantic Ocean: Influence of effective stress and temperature. Journal of Petroleum Science and Engineering, 2014, 122, 216-229.	4.2	1
35	Petrophysical and rock-mechanics effects of CO2 injection for enhanced oil recovery: Experimental study on chalk from South Arne field, North Sea. Journal of Petroleum Science and Engineering, 2014, 122, 468-487.	4.2	59
36	Equivalent pore radius and velocity of elastic waves in shale. Skjold Flank-1 Well, Danish North Sea. Journal of Petroleum Science and Engineering, 2013, 109, 280-290.	4.2	7

#	Article	IF	Citations
37	Change in Biot's Effective Stress Coefficient of Chalk During Pore Collapse. , 2013, , .		1
38	Effect of dissolved ions on bound water on water wet mineral surfaces as indicated by NMR transverse relaxation time (T2). , 2013 , , .		1
39	Static and dynamic effective stress coefficient of chalk. Geophysics, 2012, 77, L1-L11.	2.6	34
40	<i>>V_pâ€V_s</i> relationship and amplitude variation with offset modelling of glauconitic greensand [‡] . Geophysical Prospecting, 2012, 60, 117-137.	1.9	30
41	Petrophysical properties of greensand as predicted from NMR measurements. Petroleum Geoscience, 2011, 17, 111-125.	1.5	48
42	Permeability prediction in chalks. AAPG Bulletin, 2011, 95, 1991-2014.	1. 5	17
43	Rock physics model of glauconitic greensand from the North Sea. Geophysics, 2011, 76, E199-E209.	2.6	18
44	Biot Critical Frequency Applied as Common Friction Factor for Pore Collapse and Failure of Chalk With Different Pore Fluids and Temperatures. SPE Journal, 2011, 16, 1002-1009.	3.1	0
45	Influence of pore fluid and frequency on elastic properties of greensand as interpreted using NMR data., 2011,,.		1
46	Elastic moduli of sandstones saturated with a range of pore fluids correlated with kinematic viscosity and frequency ratio. , $2011, \ldots$		0
47	Surface charge of calcite and its influence on the electrical conductivity in chalk. , 2010, , .		7
48	Biot's coefficient as an indicator of strength and porosity reduction: Calcareous sediments from Kerguelen Plateau. Journal of Petroleum Science and Engineering, 2010, 70, 282-297.	4.2	51
49	Elastic moduli of dry and water-saturated carbonates â€" Effect of depositional texture, porosity, and permeability. Geophysics, 2010, 75, N65-N78.	2.6	56
50	Biot critical frequency applied to description of failure and yield of highly porous chalk with different pore fluids. Geophysics, 2010, 75, E205-E213.	2.6	20
51	Rock physics model of glauconitic greensand from the North Sea. , 2010, , .		4
52	A mechanism for water weakening of elastic moduli and mechanical strength of chalk. , 2010, , .		7
53	Dispersion of elastic waves in carbonate rocks , 2009, , .		2
54	Elastic and nonelastic deformation of greensand. The Leading Edge, 2009, 28, 86-88.	0.7	10

#	Article	IF	CITATIONS
55	Prediction of Archie's cementation factor from porosity and permeability through specific surface. Geophysics, 2008, 73, E81-E87.	2.6	27
56	Prediction of Biot's coefficient from rock-physical modeling of North Sea chalk. Geophysics, 2008, 73, E89-E96.	2.6	16
57	Chalk porosity and sonic velocity versus burial depth: Influence of fluid pressure, hydrocarbons, and mineralogy. AAPG Bulletin, 2008, 92, 201-223.	1.5	51
58	Water weakening of elastic moduli of carbonates interpreted by use of isoâ€frame modeling. , 2008, , .		5
59	Static and dynamic Young's moduli of chalk from the North Sea. Geophysics, 2008, 73, E41-E50.	2.6	29
60	How depositional texture and diagenesis control petrophysical and elastic properties of samples from five North Sea chalk fields. Petroleum Geoscience, 2007, 13, 81-95.	1.5	56
61	Estimating permeability of carbonate rocks from porosity and vp â • vs. Geophysics, 2007, 72, E185-E191.	2.6	41
62	Modelling elastic properties of impure chalk from South Arne Field, North Sea. Geophysical Prospecting, 2007, 55, 487-506.	1.9	26
63	Stylolites, porosity, depositional texture, and silicates in chalk facies sediments. Ontong Java Plateau ? Gorm and Tyra fields, North Sea. Sedimentology, 2007, 54, 183-205.	3.1	93
64	Chalk: composition, diagenesis and physical properties. Bulletin of the Geological Society of Denmark, 2007, 55, 97-128.	1.1	93
65	Methods of velocity prediction tested for North Sea chalk: a review of fluid substitution and vS estimates. Journal of Petroleum Science and Engineering, 2004, 45, 129-139.	4.2	10
66	Interpretation of Water Saturation Above the Transitional Zone in Chalk Reservoirs. SPE Reservoir Evaluation and Engineering, 2004, 7, 155-163.	1.8	19
67	Influence of porosity and pore fluid on acoustic properties of chalk: AVO response from oil, South Arne Field, North Sea. Petroleum Geoscience, 2004, 10, 319-330.	1.5	26
68	How burial diagenesis of chalk sediments controls sonic velocity and porosity. AAPG Bulletin, 2003, 87, 1755-1778.	1.5	119
69	Flow characterization of glauconitic sandstones by integrated Dynamic Neutron Radiography and image analysis of backscattered electron micrographs. Petroleum Geoscience, 2003, 9, 175-183.	1.5	7
70	Grain size distributions of chalk from image analysis of electron micrographs. Computers and Geosciences, 2001, 27, 1071-1080.	4.2	24
71	Chemical and mechanical processes during burial diagenesis of chalk: an interpretation based on specific surface data of deep-sea sediments. Sedimentology, 1998, 45, 755-769.	3.1	55
72	Stratigraphy and petrophysical characteristics of Lower Paleocene cool-water carbonates, Faxe quarry, Denmark. Bulletin of the Geological Society of Denmark, 0, 69, 97-121.	1.1	1

#	Article	IF	CITATIONS
73	The feasibility of high-temperature aquifer thermal energy storage in Denmark: the Gassum Formation in the Stenlille structure. Bulletin of the Geological Society of Denmark, 0, 68, 133-154.	1.1	3
74	Relation of acoustic impedance to stiffness and porosity of Maastrichtian chalk in Dan field, Danish North Sea. Geophysical Prospecting, 0, , .	1.9	1