Mani Diba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A dual-gelling poly(N-isopropylacrylamide)-based ink and thermoreversible poloxamer support bath for high-resolution bioprinting. Bioactive Materials, 2022, 14, 302-312.	15.6	12
2	Editorial for Special Issue on "New Strategies in Biomaterials Design for Tissue Regeneration― Tissue Engineering - Part C: Methods, 2022, 28, 287-288.	2.1	0
3	Effect of 3D Printing Temperature on Bioactivity of Bone Morphogenetic Protein-2 Released from Polymeric Constructs. Annals of Biomedical Engineering, 2021, 49, 2114-2125.	2.5	5
4	3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials, 2021, 274, 120871.	11.4	40
5	Engineering the Dynamics of Cell Adhesion Cues in Supramolecular Hydrogels for Facile Control over Cell Encapsulation and Behavior. Advanced Materials, 2021, 33, e2008111.	21.0	52
6	<i>Call for Special Issue Papers:</i> New Strategies in Biomaterials Design for Tissue Regeneration. Tissue Engineering - Part C: Methods, 2021, 27, 489-490.	2.1	0
7	Fiber engraving for bioink bioprinting within 3D printed tissue engineering scaffolds. Bioprinting, 2020, 18, e00076.	5.8	26
8	Machine Learning-Guided Three-Dimensional Printing of Tissue Engineering Scaffolds. Tissue Engineering - Part A, 2020, 26, 1359-1368.	3.1	52
9	Materials design for bone-tissue engineering. Nature Reviews Materials, 2020, 5, 584-603.	48.7	851
10	Hybrid particles derived from alendronate and bioactive glass for treatment of osteoporotic bone defects. Journal of Materials Chemistry B, 2019, 7, 796-808.	5.8	14
11	Selfâ€Healing Biomaterials: From Molecular Concepts to Clinical Applications. Advanced Materials Interfaces, 2018, 5, 1800118.	3.7	73
12	Development of a PCL-silica nanoparticles composite membrane for Guided Bone Regeneration. Materials Science and Engineering C, 2018, 85, 154-161.	7.3	91
13	Fiber-reinforced colloidal gels as injectable and moldable biomaterials for regenerative medicine. Materials Science and Engineering C, 2018, 92, 143-150.	7.3	27
14	Highly Elastic and Selfâ€Healing Composite Colloidal Gels. Advanced Materials, 2017, 29, 1604672.	21.0	87
15	Nanostructured raspberry-like gelatin microspheres for local delivery of multiple biomolecules. Acta Biomaterialia, 2017, 58, 67-79.	8.3	19
16	Composite Colloidal Gels Made of Bisphosphonateâ€Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects. Advanced Functional Materials, 2017, 27, 1703438.	14.9	71
17	Gelatin Nanoparticles with Enhanced Affinity for Calcium Phosphate. Macromolecular Bioscience, 2016, 16, 717-729.	4.1	23
18	Dual-functionalisation of gelatine nanoparticles with an anticancer platinum(<scp>ii</scp>)–bisphosphonate complex and mineral-binding alendronate. RSC Advances, 2016, 6, 113025-113037.	3.6	8

Μανι Diba

#	Article	IF	CITATIONS
19	Exploiting Bisphosphonate–Bioactiveâ€Glass Interactions for the Development of Selfâ€Healing and Bioactive Composite Hydrogels. Macromolecular Rapid Communications, 2016, 37, 1952-1959.	3.9	28
20	Electrophoretic Deposition of Chitosan Coatings Modified with Gelatin Nanospheres To Tune the Release of Antibiotics. ACS Applied Materials & amp; Interfaces, 2016, 8, 13785-13792.	8.0	84
21	Electrophoretic deposition of graphene-related materials: A review of the fundamentals. Progress in Materials Science, 2016, 82, 83-117.	32.8	210
22	Electrophoretic Co-Deposition of Chitosan and Graphene Oxide Results in Antibacterial Coatings for Medical Applications. Key Engineering Materials, 2015, 654, 176-182.	0.4	4
23	Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Current Opinion in Solid State and Materials Science, 2014, 18, 147-167.	11.5	166
24	Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide. Carbon, 2014, 67, 656-661.	10.3	65
25	Fabrication of gold-nanoshell/polycaprolactonecomposite films with high electrical conductivity. Materials Letters, 2014, 130, 164-167.	2.6	5
26	Magnesium ontaining Bioactive Glasses for Biomedical Applications. International Journal of Applied Glass Science, 2012, 3, 221-253.	2.0	158
27	Novel forsterite/polycaprolactone nanocomposite scaffold for tissue engineering applications. Materials Letters, 2011, 65, 1931-1934.	2.6	55