
A Emre Sayan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4928901/publications.pdf

Version: 2024-02-01

A FMDE SAVAN

#	Article	IF	CITATIONS
1	Epithelial to mesenchymal transition influences fibroblast phenotype in colorectal cancer by altering miRâ€200 levels in extracellular vesicles. Journal of Extracellular Vesicles, 2022, 11, .	12.2	18
2	The ZEB2â€dependent EMT transcriptional programme drives therapy resistance by activating nucleotide excision repair genes <i>ERCC1</i> and <i>ERCC4</i> in colorectal cancer. Molecular Oncology, 2021, 15, 2065-2083.	4.6	18
3	AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew. Cancers, 2021, 13, 4864.	3.7	22
4	The synthesis of biologically active indolocarbazole natural products. Natural Product Reports, 2021, 38, 1794-1820.	10.3	25
5	Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Communications Biology, 2020, 3, 130.	4.4	19
6	Protein kinase C inhibitors override ZEB1-induced chemoresistance in HCC. Cell Death and Disease, 2019, 10, 703.	6.3	25
7	ZEB1 and IL-6/11-STAT3 signalling cooperate to define invasive potential of pancreatic cancer cells via differential regulation of the expression of S100 proteins. British Journal of Cancer, 2019, 121, 65-75.	6.4	47
8	ROR1 Expression and Its Functional Significance in Hepatocellular Carcinoma Cells. Cells, 2019, 8, 210.	4.1	10
9	ETS1 is coexpressed with ZEB2 and mediates ZEB2â€induced epithelialâ€mesenchymal transition in human tumors. Molecular Carcinogenesis, 2019, 58, 1068-1081.	2.7	27
10	Activity of IL-12/15/18 primed natural killer cells against hepatocellular carcinoma. Hepatology International, 2019, 13, 75-83.	4.2	36
11	Long non-coding RNAs within the tumour microenvironment and their role in tumour-stroma cross-talk. Cancer Letters, 2018, 421, 94-102.	7.2	22
12	Genome-wide analysis of endogenously expressed ZEB2 binding sites reveals inverse correlations between ZEB2 and GalNAc-transferase GALNT3 in human tumors. Cellular Oncology (Dordrecht), 2018, 41, 379-393.	4.4	14
13	Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer. Cancer Letters, 2018, 420, 228-235.	7.2	178
14	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
15	The Colorectal Cancer Microenvironment: Strategies for Studying the Role of Cancer-Associated Fibroblasts. Methods in Molecular Biology, 2018, 1765, 87-98.	0.9	11
16	Plexin C1 Marks Liver Cancer Cells with Epithelial Phenotype and Is Overexpressed in Hepatocellular Carcinoma. Canadian Journal of Gastroenterology and Hepatology, 2018, 2018, 1-9.	1.9	7
17	Assessment of Nuclear ZEB2 as a Biomarker for Colorectal Cancer Outcome and TNM Risk Stratification. JAMA Network Open, 2018, 1, e183115.	5.9	24
18	Clinical Relevance, Prognostic Potential, and Therapeutic Strategies of Noncoding RNAs in Cancer. , 2018. , 429-445.		0

A Emre Sayan

#	Article	IF	CITATIONS
19	Abstract 5397: ExomiRs can distinguish tumor-associated from normal stroma: Potential biomarkers in colorectal cancer. , 2018, , .		1
20	Translational aspects in targeting the stromal tumour microenvironment: From bench to bedside. European Journal of Molecular and Clinical Medicine, 2017, 3, 9.	0.1	18
21	A minimum core outcome dataset for the reporting of preclinical chemotherapeutic drug studies: Lessons learned from multiple discordant methodologies in the setting of colorectal cancer. Critical Reviews in Oncology/Hematology, 2017, 112, 80-102.	4.4	5
22	Short stretches of rare codons regulate translation of the transcription factor ZEB2 in cancer cells. Oncogene, 2017, 36, 6640-6648.	5.9	22
23	Profiling the MicroRNA Payload of Exosomes Derived from Ex Vivo Primary Colorectal Fibroblasts. Methods in Molecular Biology, 2017, 1509, 115-122.	0.9	9
24	Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: role in driving cancer progression. Aging, 2017, 9, 2666-2694.	3.1	112
25	Abstract 2982: Metastatic and non-metastatic colorectal cancer cells differentially regulate fibroblast cell cycle via extracellular vesicles. , 2017, , .		0
26	A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells. Oncotarget, 2016, 7, 18851-18864.	1.8	10
27	A top-down view of the tumor microenvironment: structure, cells and signaling. Frontiers in Cell and Developmental Biology, 2015, 3, 33.	3.7	70
28	PTH-321ÂExosomes and microparticles: distinct extracellular compartments which convey genetic information in the colorectal tumour microenvironment. Gut, 2015, 64, A550.2-A551.	12.1	0
29	PTH-320ÂExosomes: extracellular vesicles which can immortalise cancer and stromal cells in the colorectal tumour microenvironment. Gut, 2015, 64, A550.1-A550.	12.1	0
30	Stratifying risk of recurrence in stage II colorectal cancer using deregulated stromal and epithelial microRNAs. Oncotarget, 2015, 6, 7262-7279.	1.8	35
31	Tumour-promoting role of EMT-inducing transcription factor ZEB1 in mantle cell lymphoma. Cell Death and Differentiation, 2014, 21, 194-195.	11.2	9
32	475: The role of ZEB2-induced epithelial–mesenchymal transition in DNA repair. European Journal of Cancer, 2014, 50, S114-S115.	2.8	0
33	Suppression of Hedgehog signalling promotes proâ€ŧumourigenic integrin expression and function. Journal of Pathology, 2014, 233, 196-208.	4.5	7
34	Molecular Profiling of the Invasive Tumor Microenvironment in a 3-Dimensional Model of Colorectal Cancer Cells and Ex vivo Fibroblasts. Journal of Visualized Experiments, 2014, , .	0.3	2
35	Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression. Cell Death and Disease, 2013, 4, e684-e684.	6.3	102
36	A 19S proteasomal subunit cooperates with an ERK MAPK-regulated degron to regulate accumulation of Fra-1 in tumour cells. Oncogene, 2012, 31, 1817-1824.	5.9	27

A EMRE SAYAN

#	Article	IF	CITATIONS
37	Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL. Oncogene, 2012, 31, 1493-1503.	5.9	95
38	Regulation of p73 activity by post-translational modifications. Cell Death and Disease, 2012, 3, e285-e285.	6.3	59
39	MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biology of the Cell, 2012, 104, 3-12.	2.0	133
40	MicroRNA Control of Invasion and Metastasis Pathways. Frontiers in Genetics, 2011, 2, 58.	2.3	55
41	Novel monoclonal antibodies detect Smad-interacting protein 1 (SIP1) in the cytoplasm of human cells from multiple tumor tissue arrays. Experimental and Molecular Pathology, 2010, 89, 182-189.	2.1	33
42	ZEB proteins link cell motility with cell cycle control and cell survival in cancer. Cell Cycle, 2010, 9, 886-891.	2.6	88
43	p73 and p63 regulate the expression of fibroblast growth factor receptor 3. Biochemical and Biophysical Research Communications, 2010, 394, 824-828.	2.1	18
44	SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14884-14889.	7.1	168
45	Regulation of p53 expression, phosphorylation and subcellular localization by a G-protein-coupled receptor. Oncogene, 2009, 28, 3619-3630.	5.9	11
46	IMMUNOEXPRESSION OF ZEB1 AND SIP1 IN HUMAN BLADDER CANCER. Journal of Urology, 2009, 181, 308-308.	0.4	0
47	Lapatinib, a dual inhibitor of ErbB-1/-2 receptors, enhances effects of combination chemotherapy in bladder cancer cells. International Journal of Oncology, 2009, 34, 1155-63.	3.3	13
48	Brn-3a/POU4F1 interacts with and differentially affects p73-mediated transcription. Cell Death and Differentiation, 2008, 15, 1266-1278.	11.2	16
49	p73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene, 2008, 27, 4363-4372.	5.9	56
50	Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10871-10876.	7.1	39
51	Direct Repression of Cyclin D1 by SIP1 Attenuates Cell Cycle Progression in Cells Undergoing an Epithelial Mesenchymal Transition. Molecular Biology of the Cell, 2007, 18, 4615-4624.	2.1	177
52	Expression of GATA-3 in epidermis and hair follicle: Relationship to p63. Biochemical and Biophysical Research Communications, 2007, 361, 1-6.	2.1	43
53	STAT1 regulates p73-mediatedBaxgene expression. FEBS Letters, 2007, 581, 1217-1226.	2.8	21
54	Generation of ÂTAp73 Proteins by Translation from a Putative Internal Ribosome Entry Site. Annals of the New York Academy of Sciences, 2007, 1095, 315-324.	3.8	12

A Emre Sayan

#	Article	IF	CITATIONS
55	FLASH is an essential component of Cajal bodies. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14802-14807.	7.1	55
56	p53 ls Cleaved by Caspases Generating Fragments Localizing to Mitochondria. Journal of Biological Chemistry, 2006, 281, 13566-13573.	3.4	78
57	TAp73Î î Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death and Differentiation, 2005, 12, 1564-1577.	11.2	179
58	New antibodies recognizing p73: Comparison with commercial antibodies. Biochemical and Biophysical Research Communications, 2005, 330, 186-193.	2.1	41
59	p73 induces apoptosis by different mechanisms. Biochemical and Biophysical Research Communications, 2005, 331, 713-717.	2.1	139
60	Calpain cleavage regulates the protein stability of p73. Biochemical and Biophysical Research Communications, 2005, 333, 954-960.	2.1	33
61	Mechanism of Induction of Apoptosis by p73 and Its Relevance to Neuroblastoma Biology. Annals of the New York Academy of Sciences, 2004, 1028, 143-149.	3.8	30
62	p73: in silico evidence for a putative third promoter region. Biochemical and Biophysical Research Communications, 2004, 313, 765-770.	2.1	15
63	Expression of TAP73 and ΔNP73 in malignant gliomas. Oncology Reports, 2004, 11, 1337.	2.6	7
64	Acquired expression of transcriptionally active p73 in hepatocellular carcinoma cells. Oncogene, 2001, 20, 5111-5117.	5.9	61
65	NAPO as a novel marker for apoptosis. Journal of Cell Biology, 2001, 155, 719-724.	5.2	14

66 p73 Affects Cell Fate and Tumorigenesis. , 0, , 536-550.

0