Michael A Mccarthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4927580/publications.pdf

Version: 2024-02-01

76 papers 3,618 citations

35 h-index 59 g-index

77 all docs

77 docs citations

times ranked

77

1933 citing authors

#	Article	IF	CITATIONS
1	Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: part l—model development and validation. Composite Structures, 2005, 71, 140-158.	5.8	197
2	Bolt-hole clearance effects and strength criteria in single-bolt, single-lap, composite bolted joints. Composites Science and Technology, 2002, 62, 1415-1431.	7.8	193
3	Progressive damage analysis of multi-bolt composite joints with variable bolt–hole clearances. Composites Part B: Engineering, 2005, 36, 290-305.	12.0	183
4	Modelling of Bird Strike on an Aircraft Wing Leading Edge Made from Fibre Metal Laminates – Part 2: Modelling of Impact with SPH Bird Model. Applied Composite Materials, 2004, 11, 317-340.	2.5	151
5	Mechanical characterisation of carbon fibre–PEEK manufactured by laser-assisted automated-tape-placement and autoclave. Composites Part A: Applied Science and Manufacturing, 2015, 69, 10-20.	7.6	148
6	Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part II––effects of bolt-hole clearance. Composite Structures, 2005, 71, 159-175.	5.8	140
7	Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach. Journal of Sound and Vibration, 2012, 331, 5069-5086.	3.9	138
8	Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Composite Structures, 2007, 80, 539-552.	5.8	126
9	Comparison of open hole tension characteristics of high strength glass and carbon fibre-reinforced composite materials. Composites Science and Technology, 2008, 68, 2770-2778.	7.8	126
10	A simple method for determining the effects of bolt–hole clearance on load distribution in single-column multi-bolt composite joints. Composite Structures, 2006, 73, 78-87.	5.8	119
11	In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Composite Structures, 2013, 96, 57-63.	5.8	108
12	An experimental study of bolt–hole clearance effects in double-lap, multi-bolt composite joints. Composite Structures, 2005, 71, 176-190.	5.8	97
13	Stress analysis of single-bolt, single-lap, countersunk composite joints with variable bolt-hole clearance. Composite Structures, 2012, 94, 1038-1051.	5.8	97
14	Experiences with Modeling Friction in Composite Bolted Joints. Journal of Composite Materials, 2005, 39, 1881-1908.	2.4	81
15	Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method. Composites Part B: Engineering, 2008, 39, 414-427.	12.0	80
16	Multiwall Nanotubes Can Be Stronger than Single Wall Nanotubes and Implications for Nanocomposite Design. Physical Review Letters, 2009, 103, 045502.	7.8	80
17	Numerical investigation of a crash test of a composite helicopter subfloor structure. Composite Structures, 2001, 51, 345-359.	5.8	72
18	Modelling bearing failure in countersunk composite joints under quasi-static loading using 3D explicit finite element analysis. Composite Structures, 2014, 108, 963-977.	5.8	72

#	Article	IF	CITATIONS
19	Dynamic finite element analysis of axially vibrating nonlocal rods. Finite Elements in Analysis and Design, 2013, 63, 42-50.	3.2	65
20	Static and high-rate loading of single and multi-bolt carbon–epoxy aircraft fuselage joints. Composites Part A: Applied Science and Manufacturing, 2013, 53, 97-108.	7.6	60
21	An Experimental Study of Bolt-Hole Clearance Effects in Single-lap, Multibolt Composite Joints. Journal of Composite Materials, 2005, 39, 799-825.	2.4	57
22	Modelling a single-bolt countersunk composite joint using implicit and explicit finite element analysis. Computational Materials Science, 2012, 64, 203-208.	3.0	57
23	BOJCAS: bolted joints in composite aircraft structures. Air & Space Europe, 2001, 3, 139-142.	0.0	53
24	Modelling of Bird Strike on an Aircraft Wing Leading Edge Made from Fibre Metal Laminates – Part 1: Material Modelling. Applied Composite Materials, 2004, 11, 295-315.	2.5	53
25	A three dimensional implicit finite element damage model and its application to single-lap multi-bolt composite joints with variable clearance. Composite Structures, 2015, 131, 1060-1072.	5.8	52
26	Simulating damage and delamination in fibre metal laminate joints using a three-dimensional damage model with cohesive elements and damage regularisation. Composites Science and Technology, 2011, 71, 1225-1235.	7.8	49
27	Frequency domain analysis of nonlocal rods embedded in an elastic medium. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 59, 33-40.	2.7	46
28	An experimental investigation into the progression of damage in pin-loaded fibre metal laminates. Composites Part B: Engineering, 2008, 39, 907-925.	12.0	45
29	Analytic integration of kernel shape function product integrals in the boundary element method. Computers and Structures, 2001, 79, 1325-1333.	4.4	43
30	A local Heaviside weighted meshless method for two-dimensional solids using radial basis functions. Computational Mechanics, 2003, 31, 301-315.	4.0	41
31	Finite element analysis of effects of clearance on single shear composite bolted joints. Plastics, Rubber and Composites, 2003, 32, 65-70.	2.0	41
32	A study of intra-laminar damage in double-lap, multi-bolt, composite joints with variable clearance using continuum damage mechanics. Composite Structures, 2014, 116, 441-452.	5.8	41
33	Improved inter-tube coupling in CNT bundles through carbon ion irradiation. Carbon, 2013, 51, 173-184.	10.3	39
34	Modelling bird impacts on an aircraft wing $\hat{a} \in \text{Part 2: Modelling the impact with an SPH bird model.}$ International Journal of Crashworthiness, 2005, 10, 51-59.	1.9	38
35	Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems. Journal of Applied Physics, 2012, 111, .	2.5	37
36	Fracture toughness of carbon fiber/polyether ether ketone composites manufactured by autoclave and laserâ€assisted automated tape placement. Journal of Applied Polymer Science, 2015, 132, .	2.6	36

#	Article	IF	Citations
37	Analysis of thick plates by using a higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 979-987.	6.6	34
38	Two-dimensional stress analysis of functionally graded solids using the MLPG method with radial basis functions. Computational Materials Science, 2008, 41, 467-481.	3.0	33
39	Characterisation of damage development in single shear bolted composite joints. Plastics, Rubber and Composites, 2002, 31, 126-133.	2.0	31
40	Experimental and Numerical Study of the Open-Hole Tensile Strength of Carbon/Epoxy Composites. Mechanics of Composite Materials, 2004, 40, 269-278.	1.4	30
41	Identification of Damage and Plasticity Parameters for Continuum Damage Mechanics Modelling of Carbon and Glass Fibreâ€Reinforced Composite Materials. Strain, 2011, 47, 105-115.	2.4	30
42	A theoretical quantification of the possible improvement in the mechanical properties of carbon nanotube bundles by carbon ion irradiation. Carbon, 2013, 53, 346-356.	10.3	29
43	Finite element modelling of crash response of composite aerospace sub-floor structures. Computational Mechanics, 2000, 26, 250-258.	4.0	26
44	BOLJAT: a tool for designing composite bolted joints using three-dimensional finite element analysis. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1573-1584.	7.6	25
45	Nonlocal normal modes in nanoscale dynamical systems. Mechanical Systems and Signal Processing, 2015, 60-61, 583-603.	8.0	25
46	Optimizing load transfer in multiwall nanotubes through interwall coupling: Theory and simulation. Acta Materialia, 2010, 58, 6324-6333.	7.9	24
47	Predicting the effects of geometry on the behaviour of fibre metal laminate joints. Composite Structures, 2011, 93, 1877-1889.	5.8	21
48	Axial Vibration of Embedded Nanorods Under Transverse Magnetic Field Effects via Nonlocal Elastic Continuum Theory. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1230-1236.	0.4	21
49	Measurement of load distribution in multibolt composite joints, in presence of varying clearance. Plastics, Rubber and Composites, 2002, 31, 412-418.	2.0	19
50	Experimental study on effects of clearance on single bolt, single shear, composite bolted joints. Plastics, Rubber and Composites, 2002, 31, 405-411.	2.0	18
51	Modelling bird impacts on an aircraft wing $\hat{a}\in$ Part 1: Material modelling of the fibre metal laminate leading edge material with continuum damage mechanics. International Journal of Crashworthiness, 2005, 10, 41-49.	1.9	18
52	A comparative study of the pin-bearing responses of two glass-based fibre metal laminates. Composites Science and Technology, 2008, 68, 3314-3321.	7.8	17
53	Finite element analysis of catastrophic failure of dynamically-loaded countersunk composite fuselage joints. Composite Structures, 2015, 133, 1198-1208.	5.8	16
54	Meshless analysis of Timoshenko beams based on a locking-free formulation and variational approaches. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 4403-4424.	6.6	14

#	Article	IF	CITATIONS
55	Predicting Failure in Multi-Bolt Composite Joints Using Finite Element Analysis and Bearing-Bypass Diagrams. Key Engineering Materials, 2005, 293-294, 591-598.	0.4	13
56	Meshless analysis of the obstacle problem for beams by the MLPG method and subdomain variational formulations. European Journal of Mechanics, A/Solids, 2003, 22, 385-399.	3.7	12
57	Measurement of Bolt Pre-load in Torqued Composite Joints. Strain, 2005, 41, 109-112.	2.4	12
58	PET interleaving veils for improved fracture toughness of glass fibre/lowâ€styreneâ€emission unsaturated polyester resin composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	11
59	Pullout of rough multiwall carbon nanotubes: A parametric study. Composites Part A: Applied Science and Manufacturing, 2014, 56, 93-102.	7.6	10
60	Potential routes to stronger carbon nanotube fibres via carbon ion irradiation and deposition. Carbon, 2016, 96, 1138-1156.	10.3	10
61	The influence of hot deformation on the exfoliation corrosion behaviour of aluminium alloy 2025. Journal of Materials Processing Technology, 2004, 153-154, 185-192.	6.3	7
62	Toughening effects of interleaved nylon veils on glass fabric/lowâ€styreneâ€emission unsaturated polyester resin composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	7
63	Effects of Shearâ€Transverse Coupling and Plasticity in the Formulation of an Elementary Ply Composites Damage Model, Part I: Model Formulation and Validation. Strain, 2012, 48, 49-58.	2.4	6
64	Numerical method to control high levels of damage growth using an implicit finite element solver applied to notched cross-ply laminates. Composite Structures, 2014, 110, 51-61.	5.8	6
65	Effects of Shearâ€Transverse Coupling and Plasticity in the Formulation of an Elementary Ply Composites Damage Model, Part II: Material Characterisation. Strain, 2012, 48, 59-67.	2.4	3
66	Design and failure analysis ofÂcomposite bolted joints for aerospace composites. , 2015, , 295-334.		3
67	Improved Mechanical Performance of CNTs and CNT Fibres in Nanocomposites Through Inter-Wall and Inter-Tube Coupling. Springer Series in Materials Science, 2014, , 1-56.	0.6	3
68	The Influence of Processing and Microstructural Parameters on the Exfoliation Corrosion Susceptibility of 2025. Materials Science Forum, 2002, 396-402, 1419-1424.	0.3	2
69	Effects of Variable Clearance in Multi-Bolt Composite Joints. Advanced Composites Letters, 2004, 13, 096369350401300.	1.3	2
70	On the use of radial basis functions in a local weighted meshless method., 2003,, 2182-2185.		1
71	The Development of a Continuum Damage Model for Fibre Metal Laminate Structures. , 2006, , 365-365.		0
72	A Model of Strength. Science, 2013, 342, 192-193.	12.6	0

#	Article	lF	CITATIONS
73	Insights into Relative Lower Frequencies and Buckling Loads of Monolayer Graphene Sheets via Nonlocal Elasticity Theory: Size-Dependent Young's Modulus Approach. Nanoscience and Nanotechnology Letters, 2013, 5, 1097-1102.	0.4	O
74	Static Analysis of Thick Functionally Graded Plates by using a Higher-Order Shear and Normal Deformable Plate Theory and MLPG method with Radial Basis Functions., 2006,, 560-560.		O
75	NONLOCAL MODAL ANALYSIS FOR NANOSCALE DYNAMICAL SYSTEMS. , 2014, , .		O
76	A Three-Dimensional Damage Model for Composites with Non-linear Shear Behaviour. , 0, , .		0