
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4927033/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF                 | CITATIONS                 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|
| 1  | Ecological traits explain longâ€ŧerm phenological trends in solitary bees. Journal of Animal Ecology,<br>2023, 92, 285-296.                                                                                                         | 2.8                | 3                         |
| 2  | Early resources lead to persistent benefits for bumble bee colony dynamics. Ecology, 2022, 103, e03560.                                                                                                                             | 3.2                | 11                        |
| 3  | The contribution of plant spatial arrangement to bumble bee flower constancy. Oecologia, 2022, 198, 471-481.                                                                                                                        | 2.0                | 6                         |
| 4  | Host plant limitation of butterflies in highly fragmented landscapes. Theoretical Ecology, 2022, 15, 165-175.                                                                                                                       | 1.0                | 6                         |
| 5  | Phenology of feeding preference in postâ€diapause Baltimore checkerspot ( <scp><i>Euphydryas) Tj ETQq1 1 C</i></scp>                                                                                                                | ).784314 rg<br>2.2 | ;BT <sub>4</sub> Overlock |
| 6  | Changes in flight period predict trends in abundance of Massachusetts butterflies. Ecology Letters, 2021, 24, 249-257.                                                                                                              | 6.4                | 19                        |
| 7  | Larger workers outperform smaller workers across resource environments: An evaluation of demographic data using functional linear models. Ecology and Evolution, 2021, 11, 2814-2827.                                               | 1.9                | 2                         |
| 8  | Using the right tool for the job: the difference between unsupervised and supervised analyses of multivariate ecological data. Oecologia, 2021, 196, 13-25.                                                                         | 2.0                | 11                        |
| 9  | Changes in phenology and abundance of an at-risk butterfly. Journal of Insect Conservation, 2021, 25, 499-510.                                                                                                                      | 1.4                | 6                         |
| 10 | Comparing demography inferred from age vs. stage in a perennial plant. Ecology, 2021, 102, e03322.                                                                                                                                  | 3.2                | 0                         |
| 11 | Estimating abundance and phenology from transect count data with GLMs. Oikos, 2021, 130, 1335-1345.                                                                                                                                 | 2.7                | 8                         |
| 12 | Are eastern and western monarch butterflies distinct populations? A review of evidence for ecological, phenotypic, and genetic differentiation and implications for conservation. Conservation Science and Practice, 2021, 3, e432. | 2.0                | 13                        |
| 13 | Resilience or Catastrophe? A possible state change for monarch butterflies in western North America.<br>Ecology Letters, 2021, 24, 1533-1538.                                                                                       | 6.4                | 16                        |
| 14 | Contrasting effects of land cover on nesting habitat use and reproductive output for bumble bees.<br>Ecosphere, 2021, 12, e03642.                                                                                                   | 2.2                | 14                        |
| 15 | The effects of commercial propagation on bumble bee (Bombus impatiens) foraging and worker body size. Apidologie, 2021, 52, 887-898.                                                                                                | 2.0                | 1                         |
| 16 | Phenotypic plasticity masks rangeâ€wide genetic differentiation for vegetative but not reproductive traits in a shortâ€lived plant. Ecology Letters, 2021, 24, 2378-2393.                                                           | 6.4                | 21                        |
| 17 | By wind or wing: pollination syndromes and alternate bearing in horticultural systems. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200371.                                              | 4.0                | 11                        |
| 18 | Do benefits of seed dispersal and caching by scatterhoarders outweigh the costs of predation? An example with oaks and yellowâ€necked mice. Journal of Ecology, 2020, 108, 1009-1018.                                               | 4.0                | 34                        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Life history tradeâ€offs are more pronounced for a noninvasive, native butterfly compared to its invasive, exotic congener. Population Ecology, 2020, 62, 119-133.                                       | 1.2 | 1         |
| 20 | Using statistics to design and estimate vital rates in matrix population models for a perennial herb.<br>Population Ecology, 2020, 62, 53-63.                                                            | 1.2 | 5         |
| 21 | International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.                                                                       | 7.8 | 176       |
| 22 | Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly. Global Change Biology, 2020, 26, 2014-2027.                    | 9.5 | 29        |
| 23 | Flowering synchrony drives reproductive success in a windâ€pollinated tree. Ecology Letters, 2020, 23, 1820-1826.                                                                                        | 6.4 | 31        |
| 24 | On the need to evaluate costs and benefits of synzoochory for plant populations. Journal of Ecology, 2020, 108, 1784-1788.                                                                               | 4.0 | 6         |
| 25 | Global gene flow releases invasive plants from environmental constraints on genetic diversity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4218-4227. | 7.1 | 108       |
| 26 | Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals. Annals of Botany, 2020, 126, 971-979.                                         | 2.9 | 28        |
| 27 | Differential impacts of soil microbes on native and coâ€occurring invasive tree species. Ecosphere, 2019, 10, e02802.                                                                                    | 2.2 | 5         |
| 28 | Why are monarch butterflies declining in the West? Understanding the importance of multiple correlated drivers. Ecological Applications, 2019, 29, e01975.                                               | 3.8 | 35        |
| 29 | Accounting for imperfect detection in species with sessile life cycle stages: a case study of bumble bee nests. Journal of Insect Conservation, 2019, 23, 945-955.                                       | 1.4 | 10        |
| 30 | Why are Monarch Butterflies Declining in the West? Understanding the Importance of Multiple<br>Correlated Drivers. Bulletin of the Ecological Society of America, 2019, 100, e01602.                     | 0.2 | 0         |
| 31 | Demographic benefits of early season resources for bumble bee (B. vosnesenskii) colonies. Oecologia,<br>2019, 191, 377-388.                                                                              | 2.0 | 28        |
| 32 | Western Monarch Population Plummets: Status, Probable Causes, and Recommended Conservation Actions. Frontiers in Ecology and Evolution, 2019, 7, .                                                       | 2.2 | 90        |
| 33 | Faster movement in nonhabitat matrix promotes range shifts in heterogeneous landscapes. Ecology,<br>2019, 100, e02701.                                                                                   | 3.2 | 32        |
| 34 | Environmental Veto Synchronizes Mast Seeding in Four Contrasting Tree Species. American Naturalist,<br>2019, 194, 246-259.                                                                               | 2.1 | 23        |
| 35 | Integrating vital rates explains optimal worker size for resource return by bumblebee workers.<br>Functional Ecology, 2019, 33, 467-478.                                                                 | 3.6 | 32        |
| 36 | Correlated seed failure as an environmental veto to synchronize reproduction of masting plants.<br>New Phytologist, 2018, 219, 98-108.                                                                   | 7.3 | 56        |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Timeâ€lagged effects of weather on plant demography: drought and <i>Astragalus scaphoides</i> .<br>Ecology, 2018, 99, 915-925.                                                            | 3.2  | 39        |
| 38 | Sourceâ€ <b>s</b> ink dynamics of bumblebees in rapidly changing landscapes. Journal of Applied Ecology, 2018, 55, 2802-2811.                                                             | 4.0  | 25        |
| 39 | Mechanism matters: the cause of fluctuations in boom–bust populations governs optimal habitat<br>restoration strategy. Ecological Applications, 2018, 28, 356-372.                        | 3.8  | 13        |
| 40 | Losing a battle but winning the war: moving past preference–performance to understand native<br>herbivore–novel host plant interactions. Oecologia, 2017, 183, 441-453.                   | 2.0  | 32        |
| 41 | Using animal movement behavior to categorize land cover and predict consequences for connectivity and patch residence times. Landscape Ecology, 2017, 32, 1657-1670.                      | 4.2  | 26        |
| 42 | Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecology<br>Letters, 2017, 20, 166-174.                                                     | 6.4  | 35        |
| 43 | Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North<br>America. Biological Conservation, 2017, 214, 343-346.                                | 4.1  | 112       |
| 44 | Effects of nitrogen deposition on reproduction in a masting tree: benefits of higher seed production are trumped by negative biotic interactions. Journal of Ecology, 2017, 105, 310-320. | 4.0  | 59        |
| 45 | Instant death, slow death and the consequences of assumptions about prolonged dormancy for plant population dynamics. Journal of Ecology, 2017, 105, 471-483.                             | 4.0  | 7         |
| 46 | Contrasting effects of spatial heterogeneity and environmental stochasticity on population dynamics of a perennial wildflower. Journal of Ecology, 2016, 104, 281-291.                    | 4.0  | 32        |
| 47 | Non-target effects of grass-specific herbicides differ among species, chemicals and host plants in Euphydryas butterflies. Journal of Insect Conservation, 2016, 20, 867-877.             | 1.4  | 11        |
| 48 | Bumble bee colony dynamics: quantifying the importance of land use and floral resources for colony growth and queen production. Ecology Letters, 2016, 19, 460-468.                       | 6.4  | 108       |
| 49 | Minimum area requirements for an atâ€risk butterfly based on movement and demography. Conservation<br>Biology, 2016, 30, 103-112.                                                         | 4.7  | 24        |
| 50 | How do vertebrates respond to mast seeding?. Oikos, 2016, 125, 300-307.                                                                                                                   | 2.7  | 94        |
| 51 | Advantages of masting in European beech: timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis. Oecologia, 2016, 180, 749-758.             | 2.0  | 69        |
| 52 | Maple syrup production declines following masting. Forest Ecology and Management, 2015, 335, 249-254.                                                                                     | 3.2  | 10        |
| 53 | Resource depletion, pollen coupling, and the ecology of mast seeding. Annals of the New York<br>Academy of Sciences, 2014, 1322, 21-34.                                                   | 3.8  | 108       |
| 54 | Climate-driven changes in northeastern US butterfly communities. Nature Climate Change, 2013, 3,<br>142-145.                                                                              | 18.8 | 146       |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The role of transient dynamics in stochastic population growth for nine perennial plants. Ecology, 2013, 94, 1681-1686.                                                      | 3.2 | 32        |
| 56 | Masting in whitebark pine ( <i>Pinus albicaulis</i> ) depletes stored nutrients. New Phytologist, 2012, 196, 189-199.                                                        | 7.3 | 127       |
| 57 | Quantifying the outcome of plant–granivore interactions. Oikos, 2012, 121, 20-27.                                                                                            | 2.7 | 68        |
| 58 | How do plant ecologists use matrix population models?. Ecology Letters, 2011, 14, 1-8.                                                                                       | 6.4 | 205       |
| 59 | What defines mast seeding? Spatioâ€ŧemporal patterns of cone production by whitebark pine. Journal of<br>Ecology, 2011, 99, 438-444.                                         | 4.0 | 45        |
| 60 | Empirical tests of lifeâ€history evolution theory using phylogenetic analysis of plant demography.<br>Journal of Ecology, 2010, 98, 334-344.                                 | 4.0 | 56        |
| 61 | Fire and mice: Seed predation moderates fire's influence on conifer recruitment. Ecology, 2010, 91, 1124-1131.                                                               | 3.2 | 65        |
| 62 | How do plants know when other plants are flowering? Resource depletion, pollen limitation and mastâ€seeding in a perennial wildflower. Ecology Letters, 2009, 12, 1119-1126. | 6.4 | 116       |
| 63 | Leading by Example: Response to Golet et al Conservation Biology, 2009, 23, 1638-1638.                                                                                       | 4.7 | 0         |
| 64 | OLD MODELS EXPLAIN NEW OBSERVATIONS OF BUTTERFLY MOVEMENT AT PATCH EDGES. Ecology, 2008, 89, 2061-2067.                                                                      | 3.2 | 29        |
| 65 | Causes and consequences of prolonged dormancy for an iteroparous geophyte, Silene spaldingii.<br>Journal of Ecology, 2007, 95, 1360-1369.                                    | 4.0 | 48        |
| 66 | Designing a network for butterfly habitat restoration: where individuals, populations and landscapes interact. Journal of Applied Ecology, 2007, 44, 725-736.                | 4.0 | 65        |
| 67 | Herbivory: effects on plant abundance, distribution and population growth. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2575-2584.                    | 2.6 | 430       |
| 68 | Pollen and water limitation in Astragalus scaphoides, a plant that flowers in alternate years.<br>Oecologia, 2006, 150, 40-49.                                               | 2.0 | 38        |
| 69 | Patch Size and Connectivity Thresholds for Butterfly Habitat Restoration. Conservation Biology, 2005, 19, 887-896.                                                           | 4.7 | 66        |
| 70 | Empirical Models of Pollen Limitation, Resource Acquisition, and Mast Seeding by a Beeâ€Pollinated Wildflower. American Naturalist, 2005, 166, 396-408.                      | 2.1 | 40        |
| 71 | Applicability of landscape and island biogeography theory to restoration of riparian understorey plants. Journal of Applied Ecology, 2004, 41, 922-933.                      | 4.0 | 77        |
| 72 | CAUSES OF SYNCHRONOUS FLOWERING IN ASTRAGALUS SCAPHOIDES, AN ITEROPAROUS PERENNIAL PLANT.<br>Ecology, 2004, 85, 1944-1954.                                                   | 3.2 | 37        |

| #  | Article                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | DOES SCALE AFFECT ECOLOGICAL MODEL PREDICTIONS? A TEST WITH LAKE RESPONSES TO FERTILIZATION. , 2004, 14, 1178-1188.                                        |     | 3         |
| 74 | ECOLOGICAL INFLUENCES ON THE DYNAMICS OF A FIELD VOLE METAPOPULATION. Ecology, 2001, 82, 831-843.                                                          | 3.2 | 52        |
| 75 | The Scientific Foundations of Habitat Conservation Plans: a Quantitative Assessment. Conservation Biology, 2001, 15, 488-500.                              | 4.7 | 45        |
| 76 | IS SURVIVORSHIP A BETTER FITNESS SURROGATE THAN FECUNDITY?. Evolution; International Journal of Organic Evolution, 2001, 55, 2611-2614.                    | 2.3 | 113       |
| 77 | EDGE-MEDIATED DISPERSAL BEHAVIOR IN A PRAIRIE BUTTERFLY. Ecology, 2001, 82, 1879-1892.                                                                     | 3.2 | 218       |
| 78 | Edge-Mediated Dispersal Behavior in a Prairie Butterfly. Ecology, 2001, 82, 1879.                                                                          | 3.2 | 11        |
| 79 | Ecological Influences on the Dynamics of a Field Vole Metapopulation. Ecology, 2001, 82, 831.                                                              | 3.2 | 1         |
| 80 | Burning Prairie to Restore Butterfly Habitat: A Modeling Approach to Management Tradeoffs for the<br>Fender's Blue. Restoration Ecology, 1998, 6, 244-252. | 2.9 | 64        |
| 81 | Population Viability of Rorippa columbiae: Multiple Models and Spatial Trend Data. Conservation<br>Biology, 1998, 12, 1054-1065.                           | 4.7 | 9         |
| 82 | Movement of nestâ€searching bumblebee queens reflects nesting habitat quality. Ecological<br>Entomology, 0, , .                                            | 2.2 | 1         |