Heather Fleming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4926631/publications.pdf

Version: 2024-02-01

52 9,485 37 51 papers citations h-index g-index

56 56 56 13554

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Distinct Hepatic Geneâ€Expression Patterns of NAFLD in Patients With Obesity. Hepatology Communications, 2022, 6, 77-89.	4.3	25
2	Protease activity sensors enable real-time treatment response monitoring in lymphangioleiomyomatosis. European Respiratory Journal, 2022, 59, 2100664.	6.7	5
3	Directing Cholangiocyte Morphogenesis in Natural Biomaterial Scaffolds. Advanced Science, 2022, 9, e2102698.	11.2	5
4	Host protease activity classifies pneumonia etiology. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	9
5	Protease Activity Analysis: A Toolkit for Analyzing Enzyme Activity Data. ACS Omega, 2022, 7, 24292-24301.	3.5	3
6	Activatable Zymography Probes Enable <i>In Situ</i> Localization of Protease Dysregulation in Cancer. Cancer Research, 2021, 81, 213-224.	0.9	15
7	Microenvironment-triggered multimodal precision diagnostics. Nature Materials, 2021, 20, 1440-1448.	27.5	42
8	Synthetic Circuit-Driven Expression of Heterologous Enzymes for Disease Detection. ACS Synthetic Biology, 2021, 10, 2231-2242.	3.8	5
9	Synthetic biomarkers: a twenty-first century path to early cancer detection. Nature Reviews Cancer, 2021, 21, 655-668.	28.4	84
10	Engineering synthetic breath biomarkers for respiratory disease. Nature Nanotechnology, 2020, 15, 792-800.	31.5	59
11	Controlled Apoptosis of Stromal Cells to Engineer Human Microlivers. Advanced Functional Materials, 2020, 30, 1910442.	14.9	9
12	Urinary detection of lung cancer in mice via noninvasive pulmonary protease profiling. Science Translational Medicine, 2020, 12, .	12.4	58
13	Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 2020, 30, 2003777.	14.9	38
14	Hepatic tissue engineering. , 2020, , 737-753.		3
15	Activity-Based Diagnostics: An Emerging Paradigm for Disease Detection and Monitoring. Trends in Molecular Medicine, 2020, 26, 450-468.	6.7	51
16	Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nature Nanotechnology, 2019, 14, 883-890.	31.5	333
17	Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Science Advances, 2019, 5, eaav4803.	10.3	109
18	Acidification of Tumor at Stromal Boundaries Drives Transcriptome Alterations Associated with Aggressive Phenotypes. Cancer Research, 2019, 79, 1952-1966.	0.9	157

#	Article	IF	CITATIONS
19	Non-viral delivery of CRISPR/Cas9 complex using CRISPR-GPS nanocomplexes. Nanoscale, 2019, 11, 21317-21323.	5.6	34
20	Harnessing Protease Activity to Improve Cancer Care. Annual Review of Cancer Biology, 2018, 2, 353-376.	4.5	70
21	Engineered Livers for Infectious Diseases. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 131-144.	4.5	41
22	Protease activity sensors noninvasively classify bacterial infections and antibiotic responses. EBioMedicine, 2018, 38, 248-256.	6.1	22
23	iRGD-guided Tumor-penetrating Nanocomplexes for Therapeutic siRNA Delivery to Pancreatic Cancer. Molecular Cancer Therapeutics, 2018, 17, 2377-2388.	4.1	52
24	Classification of prostate cancer using a protease activity nanosensor library. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8954-8959.	7.1	53
25	Ultrasensitive tumour-penetrating nanosensors of protease activity. Nature Biomedical Engineering, 2017, 1, .	22.5	94
26	Tumor-Penetrating Delivery of siRNA against TNF \hat{l}_{\pm} to Human Vestibular Schwannomas. Scientific Reports, 2017, 7, 12922.	3.3	15
27	Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357, 1156-1160.	12.6	1,059
28	In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Science Translational Medicine, 2017, 9, .	12.4	133
29	Comparison of Modular PEG Incorporation Strategies for Stabilization of Peptide–siRNA Nanocomplexes. Bioconjugate Chemistry, 2016, 27, 2323-2331.	3.6	14
30	Development of Lightâ€Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angewandte Chemie - International Edition, 2016, 55, 12440-12444.	13.8	144
31	Neuron-Targeted Nanoparticle for siRNA Delivery to Traumatic Brain Injuries. ACS Nano, 2016, 10, 7926-7933.	14.6	110
32	Programmable probiotics for detection of cancer in urine. Science Translational Medicine, 2015, 7, 289ra84.	12.4	326
33	Degradable hydrogels derived from PEGâ€diacrylamide for hepatic tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 3331-3338.	4.0	62
34	Mathematical framework for activity-based cancer biomarkers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12627-12632.	7.1	50
35	Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3671-3676.	7.1	167
36	Disease Detection by Ultrasensitive Quantification of Microdosed Synthetic Urinary Biomarkers. Journal of the American Chemical Society, 2014, 136, 13709-13714.	13.7	50

#	Article	IF	CITATIONS
37	Cell and tissue engineering for liver disease. Science Translational Medicine, 2014, 6, 245sr2.	12.4	247
38	A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors. Nano Today, 2013, 8, 566-576.	11.9	43
39	Nanoparticles That Sense Thrombin Activity As Synthetic Urinary Biomarkers of Thrombosis. ACS Nano, 2013, 7, 9001-9009.	14.6	98
40	Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nature Biotechnology, 2013, 31, 63-70.	17.5	176
41	InVERT molding for scalable control of tissue microarchitecture. Nature Communications, 2013, 4, 1847.	12.8	124
42	Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nature Chemical Biology, 2013, 9, 514-520.	8.0	230
43	Geometric control of vascular networks to enhance engineered tissue integration and function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7586-7591.	7.1	237
44	Targeted Tumor-Penetrating siRNA Nanocomplexes for Credentialing the Ovarian Cancer Oncogene <i>ID4</i> . Science Translational Medicine, 2012, 4, 147ra112.	12.4	157
45	Identification and Characterization of Receptor-Specific Peptides for siRNA Delivery. ACS Nano, 2012, 6, 8620-8631.	14.6	68
46	Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 2012, 11, 768-774.	27.5	1,661
47	Humanized mice with ectopic artificial liver tissues. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11842-11847.	7.1	144
48	Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. Advanced Materials, 2008, 20, 1630-1635.	21.0	516
49	Microscale culture of human liver cells for drug development. Nature Biotechnology, 2008, 26, 120-126.	17.5	1,088
50	Micromechanical control of cell-cell interactions. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5722-5726.	7.1	353
51	Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB Journal, 1999, 13, 1883-1900.	0.5	827
52	Prenatal detection and mapping of a distal 8p deletion associated with congenital heart disease. Prenatal Diagnosis, 1999, 19, 863-7.	2.3	4