Ramana Chintalapalle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4926600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured Ferrites: Structure, Properties and Performance. , 2022, , 177-195.		2
2	Crystal Structure, Phase Stability, Microstructure, and Optical Properties of Transition Metal Incorporated Wide Band Gap Ga2O3. Jom, 2022, 74, 79.	1.9	1
3	Structural, Optical and Mechanical Properties of Nanocrystalline Molybdenum Thin Films Deposited under Variable Substrate Temperature. Materials, 2022, 15, 754.	2.9	4
4	Fabrication and Characterization of High-Quality Epitaxial Nanocolumnar Niobium Films with Abrupt Interfaces on YSZ(001). Journal of Physical Chemistry C, 2022, 126, 2098-2107.	3.1	6
5	Aluminum Doping and Nanostructuring Enabled Designing of Magnetically Recoverable Hexaferrite Catalysts. ACS Omega, 2022, 7, 6549-6559.	3.5	12
6	Excitation dependent and time resolved photoluminescence of β-Ga2O3, β-(Ga0.955Al0.045)2O3 and β-(Ga0.91In0.09)2O3 epitaxial layers grown by pulsed laser deposition. Journal of Luminescence, 2022, 248, 118960.	3.1	8
7	Reaction Products from High Temperature Treatments of (LaxGd1â^'x)2Zr2O7 System and Volcanic Ash Powder Mixtures. Jom, 2022, 74, 2791-2808.	1.9	4
8	Tunable Dielectric Properties of Nickel Ferrite Derived via Crystallographic Site Preferential Cation Substitution. Journal of Physical Chemistry C, 2022, 126, 9123-9134.	3.1	22
9	Controlled Phase Stabilization Enabled Tunable Optical Properties of Nanocrystalline GeO ₂ Films. ACS Applied Electronic Materials, 2022, 4, 3115-3124.	4.3	9
10	Microstructure, chemical inhomogeneity, and electronic properties of tin-incorporated Ga2O3 compounds. Journal of Materials Science, 2022, 57, 11170-11188.	3.7	5
11	Effect of sintering temperature on the chemical bonding, electronic structure and electrical transport properties of β-Ga1.9Fe0.1O3 compounds. Journal of Materials Science and Technology, 2021, 67, 135-144.	10.7	9
12	Chemical composition tuning induced variable and enhanced dielectric properties of polycrystalline Ga $2\hat{a} \in \mathbb{R}$ x W x O 3 ceramics. Engineering Reports, 2021, 3, e12300.	1.7	3
13	A Model for Studying the Biomechanical Effects of Varying Ratios of Collagen Types I and III on Cardiomyocytes. Cardiovascular Engineering and Technology, 2021, 12, 311-324.	1.6	3
14	Electronic Structure, Chemical Bonding, and Electrocatalytic Activity of Ba(Fe _{0.7} Ta _{0.3})O _{3â^îî} Compounds. ACS Applied Energy Materials, 2021, 4, 1313-1322.	5.1	14
15	Size- and Phase-Controlled Nanometer-Thick β-Ga ₂ O ₃ Films with Green Photoluminescence for Optoelectronic Applications. ACS Applied Nano Materials, 2021, 4, 3331-3338.	5.0	20
16	Structural and mechanical properties of nanocrystalline Ga ₂ O ₃ films made by pulsed laser deposition onto transparent quartz substrates. Nano Express, 2021, 2, 020006.	2.4	3
17	Examination of the Oxidation and Metal–Oxide Layer Interface of a Cr–Nb–Ta–V–W High Entropy Alloy at Elevated Temperatures. Advanced Engineering Materials, 2021, 23, 2100164.	3.5	6
18	Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and ZrAlloys: Part I—Growth Mechanisms, Microstructure, and Chemical Composition. Coatings, 2021, 11, 634.	2.6	16

#	Article	IF	CITATIONS
19	Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and Zr-Alloys: Part-II: Properties and Applications. Coatings, 2021, 11, 620.	2.6	16
20	Growth, characterization and performance of bulk and nanoengineered molybdenum oxides for electrochemical energy storage and conversion. Progress in Crystal Growth and Characterization of Materials, 2021, 67, 100533.	4.0	15
21	Nanoscale-Thick Thin Films of High-Density HfO ₂ for Bulk-like Optical Responses. ACS Applied Nano Materials, 2021, 4, 10836-10844.	5.0	8
22	Interfacial Phase Modulation-Induced Structural Distortion, Band Gap Reduction, and Nonlinear Optical Activity in Tin-Incorporated Ga ₂ O ₃ . Journal of Physical Chemistry C, 2021, 125, 20468-20481.	3.1	18
23	Electronic structure and chemical bonding in transition-metal-mixed gallium oxide (Ga2O3) compounds. Journal of Physics and Chemistry of Solids, 2021, 157, 110174.	4.0	21
24	Static and cyclic oxidation of Nb-Cr-V-W-Ta high entropy alloy in air from 600 to 1400 °C. Journal of Materials Science and Technology, 2020, 38, 189-196.	10.7	34
25	Crystal Chemistry, Band-Gap Red Shift, and Electrocatalytic Activity of Iron-Doped Gallium Oxide Ceramics. ACS Omega, 2020, 5, 104-112.	3.5	45
26	<p>Alginate Hydrogels with Embedded ZnO Nanoparticles for Wound Healing Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 5097-5111.	6.7	92
27	Eco-Friendly Synthesis, Crystal Chemistry, and Magnetic Properties of Manganese-Substituted CoFe ₂ O ₄ Nanoparticles. ACS Omega, 2020, 5, 19315-19330.	3.5	54
28	First-principles calculations of the electronic structure and magnetism of nanostructured <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Co</mml:mi><mml:msub><mml: mathvariant="normal">O<mml:mn>4</mml:mn></mml: </mml:msub></mml:mrow> microgranules and nanoparticles. Physical Review B, 2020, 102, .</mml:math 	mix F.e <td>nl:##i><mml:r< td=""></mml:r<></td>	nl:##i> <mml:r< td=""></mml:r<>
29	Microstructures in a Nb-Cr-V-W-Ta high entropy alloy during annealing. Journal of Materials Science and Technology, 2020, 53, 66-72.	10.7	14
30	Unravelling the sintering temperature-induced phase transformations in Ba(Fe0.7Ta0.3)O3-l´ ceramics. Ceramics International, 2020, 46, 23257-23261.	4.8	2
31	Crystal Growth and Structure–Property Optimization of Thermally Annealed Nanocrystalline Ga ₂ O ₃ Films. Crystal Growth and Design, 2020, 20, 2893-2903.	3.0	24
32	Phase-Control-Enabled Enhancement in Hydrophilicity and Mechanical Toughness in Nanocrystalline Tungsten Oxide Films for Energy-Related Applications. ACS Applied Nano Materials, 2020, 3, 3264-3274.	5.0	14
33	Correlation between Crystal Structure, Surface/Interface Microstructure, and Electrical Properties of Nanocrystalline Niobium Thin Films. Nanomaterials, 2020, 10, 1287.	4.1	18
34	Effect of Titanium Induced Chemical Inhomogeneity on Crystal Structure, Electronic Structure, and Optical Properties of Wide Band Gap Ga ₂ O ₃ . Crystal Growth and Design, 2020, 20, 1422-1433.	3.0	21
35	Strong interaction between Au nanoparticles and porous polyurethane sponge enables efficient environmental catalysis with high reusability. Catalysis Today, 2020, 358, 246-253.	4.4	17
36	Rapid Response High Temperature Oxygen Sensor Based on Titanium Doped Gallium Oxide. Scientific Reports, 2020, 10, 178.	3.3	28

#	Article	IF	CITATIONS
37	Molybdenum-Suboxide Thin Films as Anode Layers in Planar Lithium Microbatteries. Electrochem, 2020, 1, 160-187.	3.3	6
38	Spectroscopic Characterization of the Electronic Structure, Chemical Bonding, and Band Gap in Thermally Annealed Polycrystalline Ga ₂ O ₃ Thin Films. ECS Journal of Solid State Science and Technology, 2019, 8, Q3249-Q3253.	1.8	20
39	Effect of Interface Structure on the Hydrophobicity, Mechanical and Optical Properties of HfO2/Mo/HfO2 Multilayer Films. Jom, 2019, 71, 3711-3719.	1.9	1
40	Nitrogen Incorporation Induced Soft-to-Hard Transition Observed in the Mechanical Properties of Amorphous Niobium Oxide Films. Jom, 2019, 71, 3727-3733.	1.9	5
41	Improved magnetostrictive properties of cobalt ferrite (CoFe2O4) by Mn and Dy co-substitution for magneto-mechanical sensors. Journal of Applied Physics, 2019, 126, .	2.5	25
42	Optical constants of titanium-doped gallium oxide thin films. Optical Materials, 2019, 96, 109223.	3.6	12
43	Effect of Ti doping on the crystallography, phase, surface/interface structure and optical band gap of Ga2O3 thin films. Journal of Materials Science, 2019, 54, 11526-11537.	3.7	21
44	Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films. Journal of Materials Science and Technology, 2019, 35, 2734-2741.	10.7	14
45	Electronic Structure of Tungsten-Doped <i>î²</i> -Ga ₂ O ₃ Compounds. ECS Journal of Solid State Science and Technology, 2019, 8, Q3111-Q3115.	1.8	21
46	Interplay between Solubility Limit, Structure, and Optical Properties of Tungsten-Doped Ga ₂ O ₃ Compounds Synthesized by a Two-Step Calcination Process. Inorganic Chemistry, 2019, 58, 3707-3716.	4.0	15
47	Particle Size, Morphology, and Chemical Composition Controlled CoFe ₂ O ₄ Nanoparticles with Tunable Magnetic Properties via Oleic Acid Based Solvothermal Synthesis for Application in Electronic Devices. ACS Applied Nano Materials, 2019, 2, 1828-1843.	5.0	73
48	Structural, magnetic and ferroelectric properties of lead free piezoelectric 0.9(0.45Ba0.7Ca0.3TiO3-0.55BaTi0.8Zr0.2O3) and magnetostrictive 0.1(Co0.7Mn0.3Fe1.95Dy0.05O4) magnetoelectric particulate composite. Journal of Applied Physics, 2019, 126, .	2.5	7
49	Properties of sputter-deposited gallium oxide. , 2019, , 47-66.		7
50	Nanomechanical characterization of titanium incorporated gallium oxide nanocrystalline thin films. Materials Today Nano, 2018, 2, 7-14.	4.6	12
51	Field emission properties of nano-structured cobalt ferrite (CoFe2O4) synthesized by low-temperature chemical method. Chemical Physics Letters, 2018, 701, 151-156.	2.6	28
52	Effect of Thermochemical Synthetic Conditions on the Structure and Dielectric Properties of Ga _{1.9} Fe _{0.1} O ₃ Compounds. Inorganic Chemistry, 2018, 57, 1029-1039.	4.0	11
53	Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials. AIP Advances, 2018, 8, 055801.	1.3	1
54	3D printed high performance strain sensors for high temperature applications. Journal of Applied Physics, 2018, 123, .	2.5	30

#	Article	IF	CITATIONS
55	Microstructure tuning facilitated photo-efficiency enhancement and environmental benign nature of HfO2/Mo/HfO2 multilayer films. Solar Energy, 2018, 166, 146-158.	6.1	8
56	Correlation between Structure, Chemistry, and Dielectric Properties of Iron-Doped Gallium Oxide (Ga _{2–<i>x</i>} Fe _{<i>x</i>} O ₃). Journal of Physical Chemistry C, 2018, 122, 27597-27607.	3.1	24
57	Microstructureâ€Mechanical Property Correlation in Size Controlled Nanocrystalline Molybdenum Films. Advanced Engineering Materials, 2018, 20, 1800496.	3.5	15
58	Mechanical Properties of Nanocrystalline and Amorphous Gallium Oxide Thin Films. Advanced Engineering Materials, 2018, 20, 1701033.	3.5	34
59	Controlled surface/interface structure and spin enabled superior properties and biocompatibility of cobalt ferrite nanoparticles. Applied Surface Science, 2018, 459, 788-801.	6.1	26
60	Role of A-site Ca and B-site Zr substitution in BaTiO3 lead-free compounds: Combined experimental and first principles density functional theoretical studies. Journal of Applied Physics, 2018, 123, .	2.5	24
61	Correlation between structural, ferroelectric, piezoelectric and dielectric properties of Ba0.7Ca0.3TiO3-xBaTi0.8Zr0.2O3 (x = 0.45, 0.55) ceramics. Ceramics International, 2018, 44, 20921-20928	.4.8	13
62	Effect of bias induced microstructure on the mechanical properties of nanocrystalline zirconium tungsten nitride coatings. Surface and Coatings Technology, 2017, 313, 121-128.	4.8	9
63	High Temperature Physical and Chemical Stability and Oxidation Reaction Kinetics of Ni–Cr Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 4018-4028.	3.1	6
64	Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Applied Surface Science, 2017, 414, 171-187.	6.1	128
65	Correlation between structural, magnetic and ferroelectric properties of Fe-doped (Ba-Ca)TiO3 lead-free piezoelectric. Journal of Alloys and Compounds, 2017, 712, 320-333.	5.5	44
66	Direct, functional relationship between structural and optical properties in titanium-incorporated gallium oxide nanocrystalline thin films. Applied Physics Letters, 2017, 110, 061902.	3.3	33
67	Enhanced magnetostrictive properties of nanocrystalline Dy3+ substituted Fe-rich Co0.8Fe2.2O4 for sensor applications. Journal of Applied Physics, 2017, 122, .	2.5	10
68	Effect of Molybdenum Incorporation on the Structure and Magnetic Properties of Cobalt Ferrite. Journal of Physical Chemistry C, 2017, 121, 25463-25471.	3.1	25
69	Molybdenum Incorporation Induced Enhancement in the Mechanical Properties of Gallium Oxide Films. Advanced Materials Interfaces, 2017, 4, 1700378.	3.7	14
70	Ferroelectric, piezoelectric and electrostrictive properties of Sn ⁴⁺ â€modified Ba _{0.7} Ca _{0.3} TiO ₃ leadâ€free electroceramics. Journal of the American Ceramic Society, 2017, 100, 5755-5765.	3.8	25
71	Phase ontrol Enabled Superior Mechanical and Electrical Properties of Nanocrystalline Tungstenâ€Molybdenum Thin Films. Advanced Engineering Materials, 2017, 19, 1700354.	3.5	10
72	Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga2O3 nanocrystalline films. Chemical Physics Letters, 2017, 684, 363-367.	2.6	17

RAMANA CHINTALAPALLE

#	Article	IF	CITATIONS
73	Microstructure, mechanical and electrical properties of nanocrystalline W-Mo thin films. AIP Advances, 2017, 7, .	1.3	14
74	Enhanced mechanical properties of W1â^'yMoyO3 nanocomposite thin films. Journal of Applied Physics, 2016, 120, .	2.5	12
75	Dielectric, electrical transport and magnetic properties of Er3+substituted nanocrystalline cobalt ferrite. Journal of Physics and Chemistry of Solids, 2016, 98, 20-27.	4.0	68
76	Effect of post-deposition annealing on the optical and mechanical properties of amorphous tungsten oxynitride thin films. Surface and Coatings Technology, 2016, 308, 195-202.	4.8	0
77	Size and Chemistry Controlled Cobalt-Ferrite Nanoparticles and Their Anti-proliferative Effect against the MCF-7 Breast Cancer Cells. ACS Biomaterials Science and Engineering, 2016, 2, 2139-2152.	5.2	46
78	Tungsten Incorporation into Gallium Oxide: Crystal Structure, Surface and Interface Chemistry, Thermal Stability, and Interdiffusion. Journal of Physical Chemistry C, 2016, 120, 26720-26735.	3.1	42
79	Toughness enhancement in zirconium-tungsten-nitride nanocrystalline hard coatings. AIP Advances, 2016, 6, .	1.3	8
80	Nitrogen incorporation and composition facilitated tailoring of the optical constants and dispersion energy parameters of tungsten oxynitride films. Journal of Alloys and Compounds, 2016, 683, 292-301.	5.5	7
81	Enhanced Energy Storage of Dielectric Nanocomposites at Elevated Temperatures. International Journal of Applied Ceramic Technology, 2016, 13, 125-132.	2.1	21
82	Dielectric, Complex Impedance, and Electrical Transport Properties of Erbium (Er ³⁺) Ion-Substituted Nanocrystalline, Cobalt-Rich Ferrite (Co _{1.1} Fe _{1.9–<i>x</i>} Er _{<i>x</i>} O ₄). Journal of Physical Chemistry C, 2016, 120, 5682-5693.	3.1	145
83	Controlled and enhanced dielectric properties of high-titanium containing Li Ti0.1Ni1â;¿O via chemical composition-tailoring. Chemical Physics Letters, 2016, 649, 115-118.	2.6	9
84	Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite. Journal of Alloys and Compounds, 2015, 644, 470-475.	5.5	74
85	Effect of W–Ti target composition on the surface chemistry and electronic structure of WO3–TiO2 films made by reactive sputtering. Applied Surface Science, 2015, 353, 728-734.	6.1	21
86	Analytical and Finite Element Analysis of Thermal Stresses in TiN Coatings. Mechanics of Advanced Materials and Structures, 2015, 22, 1024-1030.	2.6	4
87	Physical characterization of sputter-deposited amorphous tungsten oxynitride thin films. Thin Solid Films, 2015, 596, 160-166.	1.8	8
88	Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. Journal of Applied Physics, 2014, 115, .	2.5	122
89	Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics. Journal of Applied Physics, 2014, 116, .	2.5	99
90	Tailoring the index of refraction of nanocrystalline hafnium oxide thin films. Applied Physics Letters, 2014, 104, 101907.	3.3	28

#	Article	IF	CITATIONS
91	Effects of process parameters on the optical constants of highly textured V2O5 thin films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 117, 423-427.	0.6	7
92	Enhanced stability of hafnia based coatings in a hot gas environment. RSC Advances, 2014, 4, 8224.	3.6	1
93	Structure and optical properties of nanocrystalline hafnium oxide thin films. Optical Materials, 2014, 37, 621-628.	3.6	82
94	Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films. Journal of Applied Physics, 2014, 115, .	2.5	146
95	Polarization switching characteristics of 0.5BaTi0.8Zr0.2O3-0.5Ba0.7Ca0.3TiO3 lead free ferroelectric thin films by pulsed laser deposition. Journal of Applied Physics, 2014, 115, 154102.	2.5	18
96	Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. Journal of Alloys and Compounds, 2014, 617, 547-562.	5.5	228
97	Electronic Structure and Optical Quality of Nanocrystalline Y ₂ O ₃ Film Surfaces and Interfaces on Silicon. Journal of Physical Chemistry C, 2014, 118, 13644-13651.	3.1	81
98	Electronic behavior and impedance analysis of microcrystalline LiFePO4. Journal of Materials Science, 2013, 48, 5063-5070.	3.7	4
99	Structure and optical properties of iron oxide films prepared by a modified wet-chemical method. Ceramics International, 2013, 39, 4581-4587.	4.8	12
100	Correlation between phase and optical properties of yttrium-doped hafnium oxide nanocrystalline thin films. Optical Materials, 2013, 35, 1728-1734.	3.6	17
101	Synthesis of one-dimensional Ga 2 O 3 nanostructures via high-energy ball milling and annealing of GaN. Ceramics International, 2013, 39, 7223-7227.	4.8	12
102	Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films. Journal of Physical Chemistry C, 2013, 117, 4194-4200.	3.1	186
103	Optical Constants of Amorphous, Transparent Titanium-Doped Tungsten Oxide Thin Films. ACS Applied Materials & Interfaces, 2013, 5, 4659-4666.	8.0	62
104	Tungsten-incorporation induced red-shift in the bandgap of gallium oxide thin films. Applied Physics Letters, 2013, 102, .	3.3	46
105	Structure and Thermal Conductivity of Nanostructured Hafnia-Based Thermal Barrier Coating Grown on SS-403. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, .	0.8	0
106	Correlation between structural, magnetic, and dielectric properties of manganese substituted cobalt ferrite. Journal of Applied Physics, 2013, 114, .	2.5	111
107	Electrochemical properties of sputter-deposited MoO3 films in lithium microbatteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	28
108	DISPERSIVE OPTICAL PARAMETERS OF Ni (100) CRYSTAL AND THERMALLY EVAPORATED NICKEL FILMS. Modern Physics Letters B, 2012, 26, 1150029.	1.9	10

#	Article	IF	CITATIONS
109	Growth, Structure, and Thermal Conductivity of Yttria-Stabilized Hafnia Thin Films. ACS Applied Materials & Interfaces, 2012, 4, 200-204.	8.0	24
110	Growth Behavior, Lattice Expansion, Strain, and Surface Morphology of Nanocrystalline, Monoclinic HfO ₂ Thin Films. Journal of Physical Chemistry C, 2012, 116, 9955-9960.	3.1	47
111	Crystal Structure and Morphology of Nanocrystalline TiN Thin Films. Journal of Electronic Materials, 2012, 41, 3139-3144.	2.2	10
112	Microstructure, AC impedance and DC electrical conductivity characteristics of NiFe2-xGdxO4 (x = 0,) Tj ETQq0 (0 0 rgBT /0 1.9	Overlock 10 T
113	Correlation between microstructure, electrical and optical properties of nanocrystalline NiFe _{1.925} Dy _{0.075} O ₄ thin films. RSC Advances, 2012, 2, 941-948.	3.6	30
114	Comparative microscopic and spectroscopic analysis of temperature-dependent growth of WO3 and W0.95Ti0.05O3 thin films. Journal of Materials Science, 2012, 47, 6593-6600.	3.7	19
115	Synthesis and microstructure of Gd2O3-doped HfO2 ceramics. Ceramics International, 2012, 38, 1801-1806.	4.8	37
116	Structure and thermal conductivity of yttria-stabilized hafnia ceramic coatings grown on nickel-based alloy. Ceramics International, 2012, 38, 2957-2961.	4.8	21
117	Electrical properties of germanium oxide with α-quartz structure prepared by chemical precipitation. Ceramics International, 2012, 38, 5251-5255.	4.8	27
118	Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films. Optical Materials, 2012, 34, 893-900.	3.6	160
119	Enhanced optical constants of nanocrystalline yttrium oxide thin films. Applied Physics Letters, 2011, 98, .	3.3	79
120	X-ray Photoelectron Spectroscopy Depth Profiling of La ₂ O ₃ /Si Thin Films Deposited by Reactive Magnetron Sputtering. ACS Applied Materials & Interfaces, 2011, 3, 4370-4373.	8.0	118
121	Coexistence of spin glass behavior and long-range ferrimagnetic ordering in La- and Dy-doped Co ferrite. Journal of Applied Physics, 2011, 109, .	2.5	47
122	Crystal Structure, Phase, and Electrical Conductivity of Nanocrystalline W _{0.95} Ti _{0.05} O ₃ Thin Films. ACS Applied Materials & Interfaces, 2011, 3, 863-868.	8.0	53
123	Room temperature ferromagnetism in HfO2 films. Journal of Applied Physics, 2011, 109, 07C318.	2.5	12
124	Structure and AC conductivity of nanocrystalline Yttrium oxide thin films. Thin Solid Films, 2011, 519, 7947-7950.	1.8	29
125	Nitrogen-incorporation induced changes in the microstructure of nanocrystalline WO3 thin films. Thin Solid Films, 2011, 520, 1446-1450.	1.8	18
126	Improved electrical and dielectric properties of La-doped Co ferrite. Journal of Materials Research, 2011, 26, 584-591.	2.6	85

#	Article	IF	CITATIONS
127	Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using a HfO2 ceramic target. Applied Surface Science, 2011, 257, 2197-2202.	6.1	39
128	Dysprosium-substitution induced changes in the structure and optical properties of nickel ferrite (NiFe2O4) thin films. Chemical Physics Letters, 2011, 504, 202-205.	2.6	29
129	Spectroscopic ellipsometry and x-ray photoelectron spectroscopy of La2O3 thin films deposited by reactive magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	44
130	Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 279-284.	3.5	80
131	Growth and structural properties of α-MoO3 (010) microplates with atomically flat surface. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 159-163.	3.5	53
132	An <i>ab initio</i> study of the elastic behavior of single crystal group (IV) diborides at elevated temperatures. Applied Physics Letters, 2010, 97, .	3.3	9
133	Effect of Structure and Size on the Electrical Properties of Nanocrystalline WO ₃ Films. ACS Applied Materials & Interfaces, 2010, 2, 2623-2628.	8.0	153
134	Spectroscopic analysis of tungsten oxide thin films. Journal of Materials Research, 2010, 25, 2401-2406.	2.6	35
135	Surface structure and optical properties of nanostructured Y <inf>2</inf> 0 <inf>3</inf> films. , 2010, , .		0
136	Structure and magnetic properties of nanophase-LiFe1.5P2O7. Journal of Applied Physics, 2009, 106, 064304.	2.5	3
137	Low-temperature synthesis of morphology controlled metastable hexagonal molybdenum trioxide (MoO3). Solid State Communications, 2009, 149, 6-9.	1.9	78
138	Low-Temperature Chemical Synthesis and Microstructure Analysis of GeO ₂ Crystals with α-Quartz Structure. Crystal Growth and Design, 2009, 9, 1829-1832.	3.0	96
139	Size-effects on the optical properties of zirconium oxide thin films. Applied Physics Letters, 2009, 95, .	3.3	39
140	Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics. Geochemical Transactions, 2008, 9, 8.	0.7	21
141	Spectroscopic ellipsometry characterization of the optical properties and thermal stability of ZrO2 films made by ion-beam assisted deposition. Applied Physics Letters, 2008, 92, .	3.3	67
142	Structure and chemical properties of molybdenum oxide thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1166-1171.	2.1	60
143	Novel Lithium Iron Pyrophosphate (LiFe _{1.5} P ₂ O ₇) as a Positive Electrode for Li-Ion Batteries. Chemistry of Materials, 2007, 19, 5319-5324.	6.7	45
144	Growth and surface characterization of sputter-deposited molybdenum oxide thin films. Applied Surface Science, 2007, 253, 5368-5374.	6.1	130

#	Article	IF	CITATIONS
145	STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF MONOCLINIC AND ORTHORHOMBIC MoO ₃ PHASES. , 2006, , .		2
146	Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition. Chemical Physics Letters, 2006, 428, 114-118.	2.6	78
147	Structural Stability and Phase Transitions in WO3Thin Films. Journal of Physical Chemistry B, 2006, 110, 10430-10435.	2.6	239
148	Electrochemical Features of Li-Ni-Mn-Co Oxides. Materials Research Society Symposia Proceedings, 2006, 973, 1.	0.1	0
149	Electron microscopy investigation of structural transformations in tungsten oxide (WO3) thin films. Physica Status Solidi A, 2005, 202, R108-R110.	1.7	13
150	Surface analysis of pulsed laser-deposited V2O5 thin films and their lithium intercalated products studied by Raman spectroscopy. Surface and Interface Analysis, 2005, 37, 406-411.	1.8	98
151	Correlation between Growth Conditions, Microstructure, and Optical Properties in Pulsed-Laser-Deposited V2O5Thin Films. Chemistry of Materials, 2005, 17, 1213-1219.	6.7	120
152	Microstructural features of pulsed-laser deposited V2O5 thin films. Applied Surface Science, 2003, 207, 135-138.	6.1	38
153	Grain size effects on the optical characteristics of pulsed-laser deposited vanadium oxide thin films. Physica Status Solidi A, 2003, 199, R4-R6.	1.7	113
154	Using Metallic Interlayers to Stabilize Abrupt, Epitaxial Metal-Metal Interfaces. Physical Review Letters, 2003, 90, 066101.	7.8	17
155	Growth and characteristics of reactive pulsed laser deposited molybdenum trioxide thin films. Applied Physics A: Materials Science and Processing, 2002, 75, 417-422.	2.3	46
156	Electrical transport mechanism in Al/V2O5/Al microdevices. Ionics, 2001, 7, 130-137.	2.4	1
157	Structure and electrochemistry of thin-film oxides grown by laser-pulsed deposition. Ionics, 2001, 7, 165-171.	2.4	20
158	Low-temperature growth of vanadium pentoxide thin films produced by pulsed laser ablation. Journal Physics D: Applied Physics, 2001, 34, L35-L38.	2.8	44
159	Optical absorption behaviour of vanadium pentoxide thin films. Advanced Materials for Optics and Electronics, 1997, 7, 225-231.	0.4	14