Lieven Verschaffel

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4925319/publications.pdf
Version: 2024-02-01

The structure of the notation system in adultsấ $€^{\text {TM }}$ number line estimation: An eye-tracking study.
Quarterly Journal of Experimental Psychology, 2023, 76, 538-553.

Spontaneous focusing on Arabic number symbols: A unique component of childrenâ $€^{\mathrm{TM}}$ s early mathematical development?. Mathematical Thinking and Learning, 2022, 24, 38-51.

Which skills predict computational estimation? A longitudinal study in 5 - to 7 -year-olds. European Journal of Psychology of Education, 2022, 37, 19-38.

Longitudinal associations between spontaneous number focusing tendencies, numerical abilities, and mathematics achievement in 4- to 7-year-olds.. Journal of Educational Psychology, 2022, 114, 37-55.

The mathematical, motivational, and cognitive characteristics of high mathematics achievers in primary school.. Journal of Educational Psychology, 2022, 114, 992-1004.

The remarkably frequent, efficient, and adaptive use of the subtraction by addition strategy: A
6 choice/no-choice study in fourth- to sixth-graders with varying mathematical achievement levels. Learning and Individual Differences, 2022, 93, 102107.

7 The early development of proportional reasoning: A longitudinal study of 5 - to 8 -year-olds.. Journal of
7 Educational Psychology, 2022, 114, 1343-1358.

Ecuadorian childrenâ $€^{T M}$ s repeating patterning abilities and its association with early mathematical abilities. European Journal of Psychology of Education, 2021, 36, 945-964.

The development of computational estimation in the transition from informal to formal mathematics education. European Journal of Psychology of Education, 2021, 36, 845-864.

The importance of specific mathematical language for early proportional reasoning. Early Childhood
10 Research Quarterly, 2021, 55, 193-200.
2.7

13

11 Subtraction by addition: A remarkably natural and clever way to subtract?., 2021, , 117-141.
3

Upper Elementary School Childrenâ $€^{T M}$ s Adaptive Use of Subtraction by Addition: A Choice/No-Choice
12 Replication Study Involving Two Choice Conditions. Implementation and Replication Studies in Mathematics Education, 2021, 1, 111-138.

13 Exact arithmetic, computational estimation and approximate arithmetic are different skills: Evidence from a study with 5â€yearâ€olds. Infant and Child Development, 2021, 30, e2248.

Stimulating preschoolersấ ${ }^{\mathrm{TM}}$ focus on structure in repeating and growing patterns. Learning and Instruction, 2021, 74, 101444.
3.2

13
Word problem solving approaches in mathematics textbooks: a comparison between Singapore and
Spain. European Journal of Psychology of Education, 2020, 35, 567-587.

22 To add or to multiply in open problems? Unraveling childrenâ $€^{T M}$ S relational preference using a mixed-method approach. Educational Studies in Mathematics, 2020, 104, 405-430.

25	Spontaneous focusing on Arabic number symbols: A unique component of childrenâ $€^{T M}$ s early mathematical development?. Mathematical Thinking and Learning, 2020, 22, 281-295.	1.2
26	No Association Between the Home Math Environment and Numerical and Patterning Skills in a Large and Diverse Sample of 5- to 6-year-olds. Frontiers in Psychology, 2020, 11, 547626.	2.1
27	Intuitive errors in learnersâ $€^{\mathrm{TM}}$ fraction understanding: A dual-process perspective on the natural number bias. Memory and Cognition, 2020, 48, 1171-1180.	1.6

Expertise in developing studentsâ $€^{\text {TM }}$ expertise in mathematics: Bridging teachersâ $€^{\text {TM }}$ professional knowledge and instructional quality. ZDM - International Journal on Mathematics Education, 2020, 52, 179-192.

$$
\begin{aligned}
& 29 \quad \text { Are childrenâ } €^{T M} \text { s spontaneous number focusing tendencies related to their home numeracy } \\
& \text { environment?. ZDM - International Journal on Mathematics Education, 2020, 52, 729-742. }
\end{aligned}
$$

$2.2 \quad 12$

Word problems in mathematics education: a survey. ZDM - International Journal on Mathematics
$2.2 \quad 124$ Education, 2020, 52, 1-16.

$$
2.2
$$

3

Four-year oldsâ€ $€^{\mathrm{TM}}$ understanding of repeating and growing patterns and its association with early
numerical ability. Early Childhood Research Quarterly, 2019, 49, 152-163.
2.7

37 problems. Learning and Instruction, 2019, 61, 60-71.

39 | Gender equality in 4 â€oto 5â€yearâ€old preschoolersâ€ $€^{\mathrm{TM}}$ early numerical competencies. Developmental Scien |
| :--- |
| 2019,22, e12718. |

$40 \quad$| Disentangling the Mechanisms of Symbolic Number Processing in Adultsấ ${ }^{\mathrm{TM}}$ Mathematics and Arithmetic |
| :--- |
| Achievement. Cognitive Science, 2019, 43, . |

Affect and mathematics in young children: an introduction. Educational Studies in Mathematics, 2019,
100, 201-209.

Influencia del nivel socioecon \tilde{A}^{3} mico en el desarrollo de las competencias num \tilde{A} ©ricas de los niÃ \pm os ecuatorianos de jardÃf infantil. Perfiles Educativos, 2019, 41, .
The Power of Interactive Whiteboards for Secondary Mathematics Teaching: Two Case Studies.
43 Journal of Educational Technology Systems, 2018, 47, 50-78.
45

Solving arithmetic word problems. An analysis of Spanish textbooks / Resoluciã³n de problemas

Open word problems: taking the additive or the multiplicative road?. ZDM - International Journal on
46 Mathematics Education, 2018, 50, 91-102.
$2.2 \quad 12$

Verbal and actionâ€based measures of kindergartners' SFON and their associations with numberâ€related
utterances during picture book reading. British Journal of Educational Psychology, 2018, 88, 550-565.
Gradeâerelated differences in strategy use in multidigit division in two instructional settings. British
Journal of Developmental Psychology, 2018, 36, 169-187.
$1.7 \quad 8$

Towards a mathematically more correct understanding of rational numbers: A longitudinal study with upper elementary school learners. Learning and Individual Differences, 2018, 61, 99-108.

Beyond additive and multiplicative reasoning abilities: how preference enters the picture. European Journal of Psychology of Education, 2018, 33, 559-576.
$2.6 \quad 8$

Towards a better understanding of the potential of interactive whiteboards in stimulating
mathematics learning. Learning Environments Research, 2018, 21, 81-107.
2.8

11

Whole Number Thinking, Learning and Development: Neuro-cognitive, Cognitive and Developmental Approaches. New ICMI Study Series, 2018, , 137-167.

Effectiveness of the Building Blocks program for enhancing Ecuadorian kindergartnersấ ${ }^{\mathrm{TM}}$ numerical competencies. Early Childhood Research Quarterly, 2018, 44, 231-241.

```
5 5 ~ S p e c i a l ~ N e e d s ~ i n ~ R e s e a r c h ~ a n d ~ I n s t r u c t i o n ~ i n ~ W h o l e ~ N u m b e r ~ A r i t h m e t i c . ~ N e w ~ I C M I ~ S t u d y ~ S e r i e s , ~ 2 0 1 8 , ~ ,
375-397.
Using refutational text in mathematics education. ZDM - International Journal on Mathematics
Education, 2017, 49, 509-518.

> The use of number-based versus digit-based strategies on multi-digit subtraction: \(9 \hat{\text { ấ " } 12 \text {-year-olds' }}\)
> strategy use profiles and task performance. Learning and Individual Differences, \(2017,58,64-74\).

Benchmarkâ€based strategies in whole number line estimation. British Journal of Psychology, 2017, 108, 668-686.
2.3

29

There is more variation within than across domains: an interview with Paul A. Kirschner about
67 applying cognitive psychology-based instructional design principles in mathematics teaching and \(\square\)
learning. ZDM - International Journal on Mathematics Education, 2017, 49, 637-643.
68 Content integration as a factor in math-game effectiveness. Educational Technology Research and Development, 2017, 65, 1345-1368.

> 69 The power of refutational text: changing intuitions about the interpretation of box plots. European Journal of Psychology of Education, \(2017,32,537-550\). misinterpretation of box plots. Educational Psychology, 2017, 37, 1281-1300.
Children's understanding of the addition/subtraction complement principle. British Journal of
Educational Psychology, 2016, 86, 382-396. \begin{tabular}{l} 
Mental computation or standard algorithm? Childrenấ \({ }^{T M}\) S strategy choices on multi-digit subtractions. \\
\(82 \quad\)\begin{tabular}{l} 
Muropean Journal of Psychology of Education, 2016, 31, 99-116.
\end{tabular} \\
2.6
\end{tabular}
83 Investigating the quality of project-based science and technology learning environments in elementary school: a critical review of instruments. Studies in Science Education, 2016, 52, 1-27.Childrenâ€ \({ }^{\mathrm{TM}}\) s use of number line estimation strategies. European Journal of Psychology of Education,2016, 31, 117-134.
2.6

42
84 Childrenâ \(€^{T M}\) s use of number line estimation strategies. European Journal of Psychology of Education,
\(2016,31,117-134\).

THE RELATION BETWEEN LEARNERSâ€ \({ }^{\text {m }}\) SPONTANEOUS FOCUSING ON QUANTITATIVE RELATIONS AND THEIR
RATIONAL NUMBER KNOWLEDGE. Studia Psychologica, 2016, 58, 156-170.
0.5

18

The Development of Symbolic and Non-Symbolic Number Line Estimations: Three Developmental
86 Accounts Contrasted Within Cross-Sectional and Longitudinal Data. Psychologica Belgica, 2016, 56,
1.9

10
382-405.

The Long and Winding Road to Educationally Relevant Cognitive Neuroscience. Zeitschrift Fur
Psychologie / Journal of Psychology, 2016, 224, 312-312.
\(1.0 \quad 1\)

The Acquisition of Preschool Mathematical Abilities: Theoretical, Methodological and Educational
Considerations. Mathematical Thinking and Learning, 2015, 17, 99-115.
1.2

21

Do students attend to representational illustrations of non-standard mathematical word problems,
and, if so, how helpful are they?. Instructional Science, 2015, 43, 147-171.
Teachers' content and pedagogical content knowledge on rational numbers: A comparison of

96 Early number and arithmetic performance of Ecuadorian 4-5-year-olds. Educational Studies, 2015, 41,
\begin{tabular}{|c|c|c|c|}
\hline 97 & Inappropriately applying natural number properties in rational number tasks: characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 2015, 90, 39-56. & 2.8 & 39 \\
\hline 98 & STUDENTSâ \(€^{\text {TM }}\) UNDERSTANDING OF PROPORTIONAL, INVERSE PROPORTIONAL, AND AFFINE FUNCTIONS: TWO STUDIES ON THE ROLE OF EXTERNAL REPRESENTATIONS. International Journal of Science and Mathematics Education, 2015, 13, 47-69. & 2.5 & 22 \\
\hline 99 & In search for the natural number bias in secondary school students' interpretation of the effect of arithmetical operations. Learning and Instruction, 2015, 37, 30-38. & 3.2 & 40 \\
\hline
\end{tabular}
The association between numerical magnitude processing and mental versus algorithmic multi-digit
subtraction in children. Learning and Instruction, 2015, 35, 42-50.
101 Interactive Whiteboards in Mathematics Teaching: A Literature Review. Education Research International, 2014, 2014, 1-16.

\(1.1 \quad 12\)
102 Do students confuse dimensionality and â€œdirectionalityâ€?. Journal of Mathematical Behavior, 2014, 36, 166-176.

\(0.9 \quad 3\)
103 The Impact of Illustrations and Warnings on Solving Mathematical Word Problems Realistically. 2.6 ..... 43 Journal of Experimental Education, 2014, 82, 103-120.Do First Graders Make Efficient Use of External Number Representations? The Case of the2.99Twenty-Frame. Cognition and Instruction, 2014, 32, 353-373.2.13
Processing of Situational Information in Story Problem Texts. An Analysis from On-Line Measures.
105 Spanish Journal of Psychology, 2014, 17, E8.3.2
Interpreting histograms. As easy as it seems?. European Journal of Psychology of Education, 2014, 29, 557-575.
```

```
1 0 9 \text { Word Problems in Mathematics Education. , 2014, , 641-645.}
```

Further Evidence for a Spatial-Numerical Association in Children Before Formal Schooling.
0.7

110 Further Evidence for a Spatial-Numerical Assoc
21

5
111 Expertsâ $€^{\text {TM }}$ Misinterpretation of Box Plots â€" a Dual Processing Approach. Psychologica Belgica, 2014, 54, 395-405.

Children's use of addition to solve twoâ€digit subtraction problems. British Journal of Psychology,
2013, 104, 495-511.
2.3

15

113 The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 2013, 28, 64-72.
$3.2 \quad 128$

Brief Report. Educated adults are still affected by intuitions about the effect of arithmetical operations: evidence from a reaction-time study. Educational Studies in Mathematics, 2013, 82, 323-330.
2.8

37

115 Are secondary school students still hampered by the natural number bias? A reaction time study on
fraction comparison tasks. Research in Mathematics Education, 2013, 15, 154-164.
1.2

73

116 Studentsâ $\epsilon^{T M}$ reported justifications for their representational choices in linear function problems: an interview study. Educational Studies, 2013, 39, 104-117.
2.4
2.424

Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 2013, 34, 12-25.
3.2

365

$$
2
$$

,
121 On the misinterpretation of histograms and box plots. Educational Psychology, 2013, 33, 155-174. 2.7 18

The relative importance of childrenâ $€^{T M} s$ criteria for representational adequacy in the perception of

The Relationship between Studentsâ€ $€^{\text {TM }}$ Problem Posing and Problem Solving Abilities and Beliefs: A

127	The development of studentsâ $\epsilon^{T M}$ use of additive and proportional methods along primary and secondary school. European Journal of Psychology of Education, 2012, 27, 421-438.	2.6	41
128	What counts as a flexible representational choice? An evaluation of studentsâ ϵ^{TM} representational choices to solve linear function problems. Instructional Science, 2012, 40, 999-1019.	2.0	23
129	Who is granted authority in the mathematics classroom? An analysis of the observed and perceived distribution of authority. Educational Studies, 2012, 38, 223-234.	2.4	3
130	Naturally biased? In search for reaction time evidence for a natural number bias in adults. Journal of Mathematical Behavior, 2012, 31, 344-355.	0.9	124
131	Childrenâ $\mathbb{T}^{T M}$ s use of subtraction by addition on large single-digit subtractions. Educational Studies in Mathematics, 2012, 79, 335-349.	2.8	13
132	Abstract or Concrete Examples in Learning Mathematics? A Replication and Elaboration of Kaminski, Sloutsky, and Heckler's Study. Journal for Research in Mathematics Education, 2011, 42, 109-126.	1.8	67
133	Upper elementary school childrenâ $€^{T M}$ s understanding and solution of a quantitative problem inside and outside the mathematics class. Learning and Instruction, 2011, 21, 770-780.	3.2	19
134	The role of intelligence and feedback in childrenâ T^{TM} strategy competence. Journal of Experimental Child Psychology, 2011, 108, 61-76.	1.4	17
135	Cognitive neuroscience meets mathematics education: It takes two to Tango. Educational Research Review, 2011, 6, 232-237.	7.8	26

.

145	Adultsâ€ ${ }^{\text {TM }}$ use of subtraction by addition. Acta Psychologica, 2010, 135, 323-329.	1.5	15
146	Die Rekonzeptualisierung von Textaufgaben als Ãœbungen in mathematischer Modellierung. Journal Fur Mathematik-Didaktik, 2010, 31, 9-29.	1.5	58
147	Teachersâ $€^{\mathrm{TM}}$ metacognitive and heuristic approaches to word problem solving: analysis and impact on studentsấ ${ }^{T M}$ beliefs and performance. ZDM - International Journal on Mathematics Education, 2010, 42, 205-218.	2.2	29
148	Traveling down the road: from cognitive neuroscience to mathematics education â€ \mid and back. ZDM International Journal on Mathematics Education, 2010, 42, 649-654.	2.2	19
149	The Numerical Stroop Effect in Primary School Children: A Comparison of Low, Normal, and High Achievers. Child Neuropsychology, 2010, 16, 461-477.	1.3	17
150	Discriminating Non-linearity from Linearity: Its Cognitive Foundations in Five-Year-Olds. Mathematical Thinking and Learning, 2010, 12, 4-19.	1.2	7
151	Children's Criteria for Representational Adequacy in the Perception of Simple Sonic Stimuli. Cognition and Instruction, 2010, 28, 475-502.	2.9	10
152	Just Answering â€ ${ }_{\mid}$or Thinking? Contrasting Pupils' Solutions and Classifications of Missing-Value Word Problems. Mathematical Thinking and Learning, 2010, 12, 20-35.	1.2	37
153	Frequency, efficiency and flexibility of indirect addition in two learning environments. Learning and Instruction, 2010, 20, 205-215.	3.2	37
154	Teachers' approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education, 2010, 26, 152-160.	3.2	59

155 Cognitive neuroscience meets mathematics education. Educational Research Review, 2010, 5, 97-105. 7.8

165 Basic number processing and difficulties in single-digit arithmetic: Evidence from Velo-Cardio-Facial
Syndrome. Cortex, 2009, 45, 177-188.
167 Working memory and individual differences in mathematics achievement: A longitudinal study from
first grade to second grade. Journal of Experimental Child Psychology, 2009, 103, 186-201.

$168 \quad$| The predictive value of numerical magnitude comparison for individual differences in mathematics |
| :--- |
| achievement. Journal of Experimental Child Psychology, 2009, 103, 469-479. |

$169 \quad$| Solving Subtraction Problems by Means of Indirect Addition. Mathematical Thinking and Learning, |
| :--- |
| $2009,11,79-91$. |

170 Strengths and Weaknesses of the Choice/No-Choice Method in Research on Strategy Use. European

Psychologist, 2009, 14, 351-362.

171 Proportional Reasoning as a Heuristic-Based Process. Experimental Psychology, 2009, 56, 92-99.
0.7

42

172 Estimation of $\hat{a} €^{\sim} r e a l a ̂ \notin{ }^{\top M}$ numerosities in elementary school children. European Journal of Psychology of Education, 2008, 23, 319-338.
2.6
173 A microgenetic study of insightful problem solving. Journal of Experimental Child Psychology, 2008,
99, 210-232. 1.4

The relationship between the shape of the mental number line and familiarity with numbers in 5 - to
174 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology,
1.4 2008, 99, 1-17.
175 A validation of eye movements as a measure
Cognitive Development, 2008, 23, 409-422.

181 The Development of Children's Adaptive Expertise in the Number Domain 20 to 100. Cognition and Instruction, 2006, 24, 439-465.

185	Not Everything Is Proportional: Effects of Age and Problem Type on Propensities for Overgeneralization. Cognition and Instruction, 2005, 23, 57-86.	2.9	122
186	Simple Addition Strategies in a First-Grade Class With Multiple Strategy Instruction. Cognition and Instruction, 2005, 23, 1-21.	2.9	53
187	Children's strategies in numerosity judgment. Cognitive Development, 2005, 20, 448-471.	1.3	36
188	The development of mathematical competence in Flemish preservice elementary school teachers. Teaching and Teacher Education, 2005, 21, 49-63.	3.2	7
189	Strategy Development in Childrenwith Mathematical Disabilities. Journal of Learning Disabilities, 2004, 37, 119-131.	2.2	43
190	The predictive power of intuitive rules: A critical analysis of the impact of `more Aấ"more B' and 'same Aâ€"same B'. Educational Studies in Mathematics, 2004, 56, 179-207.	2.8	17
191	The CLIA-model: A framework for designing powerful learning environments for thinking and problem solving. European Journal of Psychology of Education, 2004, 19, 365-384.	2.6	108
192	Strategic aspects of simple addition and subtraction: the influence of mathematical ability. Learning and Instruction, 2004, 14, 177-195.	3.2	48
193	Remedying secondary school studentsấ ${ }^{\top} M$ illusion of linearity: a teaching experiment aiming at conceptual change. Learning and Instruction, 2004, 14, 485-501.	3.2	57

194 The Illusion of Linearity: Expanding the evidence towards probabilistic reasoning. Educational Studies

The relation between metastrategic knowledge, strategy use and task performance: Findings and
Strategic Aspects of Numerosity Judgment: The Effect of Task Characteristics. ExperimentalPsychology, 2003, 50, 63-75.
The Impact of Preservice Teachers' Content Knowledge on Their Evaluation of Students' Strategies for
200 Solving Arithmetic and Algebra Word Problems. Journal for Research in Mathematics Education, 2002, 33, 319.
33, 319.
201 The Effects of Different Problem Presentations and Formulations on the Illusion of Linearity in
1.2
Secondary School Students. Mathematical Thinking and Learning, 2002, 4, 65-89.
Development of Early Numeracy in 5- to 7-Year-Old Children: A Comparison Between Flanders and The
202 Netherlands. Educational Research and Evaluation, 2002, 8, 249-275.
1.6
21
203 Strategic competence: Applying Sieglerâ $€^{\mathrm{TM}}$ s theoretical and methodological framework to the domain of simple addition. European Journal of Psychology of Education, 2002, 17, 275-291.
$2.6 \quad 20$
204 Title is missing!. Educational Studies in Mathematics, 2002, 50, 311-334.
2.8
95
205 Strategic aspects of childrenâ $€^{T M}$ S numerosity judgement. European Journal of Psychology of Education, 2001, 16, 233-255.
$2.6 \quad 14$
206 Using segmented linear regression models with unknown change points to analyze strategy shifts in cognitive tasks. Behavior Research Methods, 2001, 33, 470-478.Improving text comprehension strategies in upper primary school children: A design experiment.
British Journal of Educational Psychology, 2001, 71, 531-559.
207 British Journal of Educational Psychology, 2001, 71, 531-559. $2.9 \quad 95$1.324
Learning to Solve Mathematical Application Problems: A Design Experiment With Fifth Graders.208 Learning to Solve Mathematical Application Problems: A
1.2 191
209 Upper Elementary School Pupils' Difficulties in Modeling and Solving Nonstandard Additive Word
Problems Involving Ordinal Numbers. Journal for Research in Mathematics Education, 1999, 30, 265. 1.8 49
210 Title is missing!. Educational Studies in Mathematics, 1998, 35, 65-83.2.887
211. The acquisition and use of an adaptive strategy for estimating numerosity. European Journal of 2.6 24
Psychology of Education, 1998, 13, 347-370.Teaching Realistic Mathematical Modeling in the Elementary School: A Teaching Experiment with Fifth1.884
Graders. Journal for Research in Mathematics Education, 1997, 28, 577. 212Realistic considerations in solving problematic word problems: Do Japanese and Belgian children have3.279
213 the same difficulties?. Learning and Instruction, 1997, 7, 329-338.Teaching Realistic Mathematical Modeling in the Elementary School: A Teaching Experiment With FifthGraders. Journal for Research in Mathematics Education, 1997, 28, 577-601.

A decade of research on word problem solving in Leuven: Theoretical, methodological, and practical

