## Lieven Verschaffel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4925319/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 2013, 34, 12-25.                                             | 3.2 | 365       |
| 2  | The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 2009, 103, 469-479.                                                    | 1.4 | 339       |
| 3  | Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. Journal of Experimental Child Psychology, 2009, 103, 186-201.                                     | 1.4 | 293       |
| 4  | Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education.<br>European Journal of Psychology of Education, 2009, 24, 335-359.                                                       | 2.6 | 208       |
| 5  | Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 1994, 4, 273-294.                                                                                              | 3.2 | 203       |
| 6  | Learning to Solve Mathematical Application Problems: A Design Experiment With Fifth Graders.<br>Mathematical Thinking and Learning, 1999, 1, 195-229.                                                                          | 1.2 | 191       |
| 7  | Influence of rewording verbal problems on children's problem representations and solutions<br>Journal of Educational Psychology, 1985, 77, 460-470.                                                                            | 2.9 | 164       |
| 8  | The Effect of Semantic Structure on First Graders' Strategies for Solving Addition and Subtraction Word Problems. Journal for Research in Mathematics Education, 1987, 18, 363.                                                | 1.8 | 145       |
| 9  | The relationship between the shape of the mental number line and familiarity with numbers in 5- to<br>9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology,<br>2008, 99, 1-17. | 1.4 | 143       |
| 10 | Associations of Number Line Estimation With Mathematical Competence: AÂMetaâ€analysis. Child<br>Development, 2018, 89, 1467-1484.                                                                                              | 3.0 | 137       |
| 11 | The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 2013, 28, 64-72.                                                                               | 3.2 | 128       |
| 12 | Naturally biased? In search for reaction time evidence for a natural number bias in adults. Journal of<br>Mathematical Behavior, 2012, 31, 344-355.                                                                            | 0.9 | 124       |
| 13 | Word problems in mathematics education: a survey. ZDM - International Journal on Mathematics Education, 2020, 52, 1-16.                                                                                                        | 2.2 | 124       |
| 14 | Not Everything Is Proportional: Effects of Age and Problem Type on Propensities for Overgeneralization. Cognition and Instruction, 2005, 23, 57-86.                                                                            | 2.9 | 122       |
| 15 | The CLIA-model: A framework for designing powerful learning environments for thinking and problem solving. European Journal of Psychology of Education, 2004, 19, 365-384.                                                     | 2.6 | 108       |
| 16 | Flexible and adaptive use of strategies and representations in mathematics education. ZDM -<br>International Journal on Mathematics Education, 2009, 41, 535-540.                                                              | 2.2 | 100       |
| 17 | Solving compare problems: An eye movement test of Lewis and Mayer's consistency hypothesis<br>Journal of Educational Psychology, 1992, 84, 85-94.                                                                              | 2.9 | 98        |
| 18 | "Accepting Emotional Complexity†A Socio-Constructivist Perspective on the Role of Emotions in the<br>Mathematics Classroom. Educational Studies in Mathematics, 2006, 63, 193-207.                                             | 2.8 | 96        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Improving text comprehension strategies in upper primary school children: A design experiment.<br>British Journal of Educational Psychology, 2001, 71, 531-559.                                                        | 2.9 | 95        |
| 20 | Title is missing!. Educational Studies in Mathematics, 2002, 50, 311-334.                                                                                                                                              | 2.8 | 95        |
| 21 | Title is missing!. Educational Studies in Mathematics, 1998, 35, 65-83.                                                                                                                                                | 2.8 | 87        |
| 22 | Teaching Realistic Mathematical Modeling in the Elementary School: A Teaching Experiment with Fifth<br>Graders. Journal for Research in Mathematics Education, 1997, 28, 577.                                          | 1.8 | 84        |
| 23 | Teachers' content and pedagogical content knowledge on rational numbers: A comparison of prospective elementary and lower secondary school teachers. Teaching and Teacher Education, 2015, 47, 82-92.                  | 3.2 | 84        |
| 24 | A validation of eye movements as a measure of elementary school children's developing number sense.<br>Cognitive Development, 2008, 23, 409-422.                                                                       | 1.3 | 83        |
| 25 | Realistic considerations in solving problematic word problems: Do Japanese and Belgian children have the same difficulties?. Learning and Instruction, 1997, 7, 329-338.                                               | 3.2 | 79        |
| 26 | Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education, 2013, 15, 154-164.                                     | 1.2 | 73        |
| 27 | From Addition to Multiplication … and Back: The Development of Students' Additive and Multiplicative<br>Reasoning Skills. Cognition and Instruction, 2010, 28, 360-381.                                                | 2.9 | 72        |
| 28 | The Illusion of Linearity: Expanding the evidence towards probabilistic reasoning. Educational Studies in Mathematics, 2003, 53, 113-138.                                                                              | 2.8 | 70        |
| 29 | Abstract or Concrete Examples in Learning Mathematics? A Replication and Elaboration of Kaminski,<br>Sloutsky, and Heckler's Study. Journal for Research in Mathematics Education, 2011, 42, 109-126.                  | 1.8 | 67        |
| 30 | The Impact of Preservice Teachers' Content Knowledge on Their Evaluation of Students' Strategies for<br>Solving Arithmetic and Algebra Word Problems. Journal for Research in Mathematics Education, 2002,<br>33, 319. | 1.8 | 63        |
| 31 | Children's solution processes in elementary arithmetic problems: Analysis and improvement Journal of Educational Psychology, 1981, 73, 765-779.                                                                        | 2.9 | 62        |
| 32 | Dual Processes in the Psychology of Mathematics Education and Cognitive Psychology. Human Development, 2009, 52, 95-108.                                                                                               | 2.0 | 62        |
| 33 | Mathematical learning disabilities in children with 22q11.2 deletion syndrome: A review.<br>Developmental Disabilities Research Reviews, 2009, 15, 4-10.                                                               | 2.9 | 62        |
| 34 | Acquisition and use of shortcut strategies by traditionally schooled children. Educational Studies in Mathematics, 2009, 71, 1-17.                                                                                     | 2.8 | 61        |
| 35 | Efficiency and flexibility of indirect addition in the domain of multi-digit subtraction. Learning and Instruction, 2009, 19, 1-12.                                                                                    | 3.2 | 60        |
| 36 | Influence of situational and conceptual rewording on word problem solving. British Journal of Educational Psychology, 2007, 77, 829-848.                                                                               | 2.9 | 59        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Teachers' approaches towards word problem solving: Elaborating or restricting the problem context.<br>Teaching and Teacher Education, 2010, 26, 152-160.                                            | 3.2 | 59        |
| 38 | Die Rekonzeptualisierung von Textaufgaben als Übungen in mathematischer Modellierung. Journal Fur<br>Mathematik-Didaktik, 2010, 31, 9-29.                                                           | 1.5 | 58        |
| 39 | Remedying secondary school students' illusion of linearity: a teaching experiment aiming at<br>conceptual change. Learning and Instruction, 2004, 14, 485-501.                                      | 3.2 | 57        |
| 40 | Simple Addition Strategies in a First-Grade Class With Multiple Strategy Instruction. Cognition and Instruction, 2005, 23, 1-21.                                                                    | 2.9 | 53        |
| 41 | Upper Elementary School Pupils' Difficulties in Modeling and Solving Nonstandard Additive Word<br>Problems Involving Ordinal Numbers. Journal for Research in Mathematics Education, 1999, 30, 265. | 1.8 | 49        |
| 42 | The Development of Children's Adaptive Expertise in the Number Domain 20 to 100. Cognition and Instruction, 2006, 24, 439-465.                                                                      | 2.9 | 49        |
| 43 | Strategic aspects of simple addition and subtraction: the influence of mathematical ability. Learning and Instruction, 2004, 14, 177-195.                                                           | 3.2 | 48        |
| 44 | Basic number processing and difficulties in single-digit arithmetic: Evidence from Velo-Cardio-Facial<br>Syndrome. Cortex, 2009, 45, 177-188.                                                       | 2.4 | 45        |
| 45 | Unraveling the gap between natural and rational numbers. Learning and Instruction, 2015, 37, 1-4.                                                                                                   | 3.2 | 45        |
| 46 | Strategy Development in Childrenwith Mathematical Disabilities. Journal of Learning Disabilities, 2004, 37, 119-131.                                                                                | 2.2 | 43        |
| 47 | The Impact of Illustrations and Warnings on Solving Mathematical Word Problems Realistically.<br>Journal of Experimental Education, 2014, 82, 103-120.                                              | 2.6 | 43        |
| 48 | Children's use of number line estimation strategies. European Journal of Psychology of Education, 2016, 31, 117-134.                                                                                | 2.6 | 42        |
| 49 | Gender equality in 4―to 5â€yearâ€old preschoolers' early numerical competencies. Developmental Science,<br>2019, 22, e12718.                                                                        | 2.4 | 42        |
| 50 | Strengths and Weaknesses of the Choice/No-Choice Method in Research on Strategy Use. European Psychologist, 2009, 14, 351-362.                                                                      | 3.1 | 42        |
| 51 | Proportional Reasoning as a Heuristic-Based Process. Experimental Psychology, 2009, 56, 92-99.                                                                                                      | 0.7 | 42        |
| 52 | The Effects of Different Problem Presentations and Formulations on the Illusion of Linearity in Secondary School Students. Mathematical Thinking and Learning, 2002, 4, 65-89.                      | 1.2 | 41        |
| 53 | Young Children's Understanding and Application of Subtraction-Related Principles. Mathematical Thinking and Learning, 2009, 11, 2-9.                                                                | 1.2 | 41        |
| 54 | The development of students' use of additive and proportional methods along primary and secondary school. European Journal of Psychology of Education, 2012, 27, 421-438.                           | 2.6 | 41        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | AN INVESTIGATION ON CHINESE TEACHERS' REALISTIC PROBLEM POSING AND PROBLEM SOLVING ABILITY AND BELIEFS. International Journal of Science and Mathematics Education, 2011, 9, 919-948.                                                | 2.5 | 40        |
| 56 | In search for the natural number bias in secondary school students' interpretation of the effect of arithmetical operations. Learning and Instruction, 2015, 37, 30-38.                                                              | 3.2 | 40        |
| 57 | Towards a mathematically more correct understanding of rational numbers: A longitudinal study with upper elementary school learners. Learning and Individual Differences, 2018, 61, 99-108.                                          | 2.7 | 40        |
| 58 | Solving Subtraction Problems by Means of Indirect Addition. Mathematical Thinking and Learning, 2009, 11, 79-91.                                                                                                                     | 1.2 | 39        |
| 59 | Inappropriately applying natural number properties in rational number tasks: characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 2015, 90, 39-56. | 2.8 | 39        |
| 60 | A decade of research on word problem solving in Leuven: Theoretical, methodological, and practical outcomes. Educational Psychology Review, 1993, 5, 239-256.                                                                        | 8.4 | 38        |
| 61 | The heuristic interpretation of box plots. Learning and Instruction, 2013, 26, 22-35.                                                                                                                                                | 3.2 | 38        |
| 62 | Just Answering … or Thinking? Contrasting Pupils' Solutions and Classifications of Missing-Value<br>Word Problems. Mathematical Thinking and Learning, 2010, 12, 20-35.                                                              | 1.2 | 37        |
| 63 | Frequency, efficiency and flexibility of indirect addition in two learning environments. Learning and Instruction, 2010, 20, 205-215.                                                                                                | 3.2 | 37        |
| 64 | Cognitive neuroscience meets mathematics education. Educational Research Review, 2010, 5, 97-105.                                                                                                                                    | 7.8 | 37        |
| 65 | Brief Report. Educated adults are still affected by intuitions about the effect of arithmetical operations: evidence from a reaction-time study. Educational Studies in Mathematics, 2013, 82, 323-330.                              | 2.8 | 37        |
| 66 | Four-year olds' understanding of repeating and growing patterns and its association with early numerical ability. Early Childhood Research Quarterly, 2019, 49, 152-163.                                                             | 2.7 | 37        |
| 67 | Children's strategies in numerosity judgment. Cognitive Development, 2005, 20, 448-471.                                                                                                                                              | 1.3 | 36        |
| 68 | Do students attend to representational illustrations of non-standard mathematical word problems, and, if so, how helpful are they?. Instructional Science, 2015, 43, 147-171.                                                        | 2.0 | 34        |
| 69 | Inhibiting natural knowledge in fourth graders: towards a comprehensive test instrument. ZDM -<br>International Journal on Mathematics Education, 2015, 47, 849-857.                                                                 | 2.2 | 34        |
| 70 | The association between children's numerical magnitude processing and mental multi-digit subtraction. Acta Psychologica, 2014, 145, 75-83.                                                                                           | 1.5 | 33        |
| 71 | The association between numerical magnitude processing and mental versus algorithmic multi-digit subtraction in children. Learning and Instruction, 2015, 35, 42-50.                                                                 | 3.2 | 33        |
| 72 | Pre-service Teachers' Preferred Strategies for Solving Arithmetic and Algebra Word Problems.<br>Journal of Mathematics Teacher Education, 2003, 6, 27-52.                                                                            | 1.8 | 29        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Teachers' metacognitive and heuristic approaches to word problem solving: analysis and impact on<br>students' beliefs and performance. ZDM - International Journal on Mathematics Education, 2010, 42,<br>205-218.                           | 2.2 | 29        |
| 74 | Kindergartners' Spontaneous Focusing on Numerosity in Relation to Their Number-Related Utterances<br>During Numerical Picture Book Reading. Mathematical Thinking and Learning, 2016, 18, 125-141.                                           | 1.2 | 29        |
| 75 | Mental computation or standard algorithm? Children's strategy choices on multi-digit subtractions.<br>European Journal of Psychology of Education, 2016, 31, 99-116.                                                                         | 2.6 | 29        |
| 76 | Benchmarkâ€based strategies in whole number line estimation. British Journal of Psychology, 2017, 108,<br>668-686.                                                                                                                           | 2.3 | 29        |
| 77 | Teaching Realistic Mathematical Modeling in the Elementary School: A Teaching Experiment With Fifth<br>Graders. Journal for Research in Mathematics Education, 1997, 28, 577-601.                                                            | 1.8 | 29        |
| 78 | Children's graphical notations as representational tools for musical sense-making in a music-listening task. British Journal of Music Education, 2009, 26, 189-211.                                                                          | 0.3 | 28        |
| 79 | Jump or compensate? Strategy flexibility in the number domain up to 100. ZDM - International Journal on Mathematics Education, 2009, 41, 581-590.                                                                                            | 2.2 | 27        |
| 80 | Cognitive neuroscience meets mathematics education: It takes two to Tango. Educational Research Review, 2011, 6, 232-237.                                                                                                                    | 7.8 | 26        |
| 81 | An empirical test of the impact of primitive intuitive models of operations on solving word problems with a multiplicative structure. Learning and Instruction, 1996, 6, 219-242.                                                            | 3.2 | 25        |
| 82 | Efficient and flexible strategy use on multi-digit sums: a choice/no-choice study. Research in<br>Mathematics Education, 2013, 15, 129-140.                                                                                                  | 1.2 | 25        |
| 83 | The acquisition and use of an adaptive strategy for estimating numerosity. European Journal of Psychology of Education, 1998, 13, 347-370.                                                                                                   | 2.6 | 24        |
| 84 | Using segmented linear regression models with unknown change points to analyze strategy shifts in cognitive tasks. Behavior Research Methods, 2001, 33, 470-478.                                                                             | 1.3 | 24        |
| 85 | An electrophysiological investigation of non-symbolic magnitude processing: Numerical distance effects in children with and without mathematical learning disabilities. Cortex, 2013, 49, 2162-2177.                                         | 2.4 | 24        |
| 86 | Who can escape the natural number bias in rational number tasks? A study involving students and experts. British Journal of Psychology, 2016, 107, 537-555.                                                                                  | 2.3 | 24        |
| 87 | Spontaneous focusing on Arabic number symbols and its association with early mathematical competencies. Early Childhood Research Quarterly, 2019, 48, 111-121.                                                                               | 2.7 | 24        |
| 88 | What counts as a flexible representational choice? An evaluation of students' representational choices to solve linear function problems. Instructional Science, 2012, 40, 999-1019.                                                         | 2.0 | 23        |
| 89 | Development of Children's Solutions of Non-Standard Arithmetic Word Problem Solving // El<br>desarrollo de las soluciones infantiles en la resolución de problemas aritméticos no estAjndar.<br>Revista De Psicodidactica, 2013, 19, 93-123. | 1.3 | 23        |
| 90 | The relation between metastrategic knowledge, strategy use and task performance: Findings and reflections from a numerosity judgement task. European Journal of Psychology of Education, 2003, 18, 425-447.                                  | 2.6 | 22        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Attitudes Toward Statistics and Their Relationship with Short- and Long-Term Exam Results. Journal of Statistics Education, 2006, 14, .                                                                                | 1.4 | 22        |
| 92  | Students' self-regulation of emotions in mathematics: an analysis of meta-emotional knowledge and skills. ZDM - International Journal on Mathematics Education, 2011, 43, 483-495.                                     | 2.2 | 22        |
| 93  | STUDENTS' UNDERSTANDING OF PROPORTIONAL, INVERSE PROPORTIONAL, AND AFFINE FUNCTIONS: TWO STUDIES ON THE ROLE OF EXTERNAL REPRESENTATIONS. International Journal of Science and Mathematics Education, 2015, 13, 47-69. | 2.5 | 22        |
| 94  | No Association Between the Home Math Environment and Numerical and Patterning Skills in a Large and Diverse Sample of 5- to 6-year-olds. Frontiers in Psychology, 2020, 11, 547626.                                    | 2.1 | 22        |
| 95  | Strategic Aspects of Numerosity Judgment: The Effect of Task Characteristics. Experimental Psychology, 2003, 50, 63-75.                                                                                                | 0.7 | 22        |
| 96  | Development of Early Numeracy in 5- to 7-Year-Old Children: A Comparison Between Flanders and The<br>Netherlands. Educational Research and Evaluation, 2002, 8, 249-275.                                               | 1.6 | 21        |
| 97  | Pupils' over-reliance on linearity: A scholastic effect?. British Journal of Educational Psychology, 2007, 77, 307-321.                                                                                                | 2.9 | 21        |
| 98  | The Acquisition of Preschool Mathematical Abilities: Theoretical, Methodological and Educational Considerations. Mathematical Thinking and Learning, 2015, 17, 99-115.                                                 | 1.2 | 21        |
| 99  | The use of number-based versus digit-based strategies on multi-digit subtraction: 9–12-year-olds'<br>strategy use profiles and task performance. Learning and Individual Differences, 2017, 58, 64-74.                 | 2.7 | 21        |
| 100 | Development of SFON in Ecuadorian Kindergartners. European Journal of Psychology of Education, 2017, 32, 449-462.                                                                                                      | 2.6 | 21        |
| 101 | Learning Mathematics in Metacognitively Oriented ICT-Based Learning Environments: A Systematic Review of the Literature. Education Research International, 2019, 2019, 1-19.                                           | 1.1 | 21        |
| 102 | Affect and mathematics in young children: an introduction. Educational Studies in Mathematics, 2019, 100, 201-209.                                                                                                     | 2.8 | 21        |
| 103 | Further Evidence for a Spatial-Numerical Association in Children Before Formal Schooling.<br>Experimental Psychology, 2014, 61, 323-329.                                                                               | 0.7 | 21        |
| 104 | Strategic competence: Applying Siegler's theoretical and methodological framework to the domain of simple addition. European Journal of Psychology of Education, 2002, 17, 275-291.                                    | 2.6 | 20        |
| 105 | The effectiveness of a math game: The impact of integrating conceptual clarification as support.<br>Computers in Human Behavior, 2016, 64, 21-33.                                                                      | 8.5 | 20        |
| 106 | Expertise in developing students' expertise in mathematics: Bridging teachers' professional knowledge<br>and instructional quality. ZDM - International Journal on Mathematics Education, 2020, 52, 179-192.           | 2.2 | 20        |
| 107 | Analysing the adaptiveness of strategy choices using the choice/no-choice method: The case of numerosity judgement. European Journal of Cognitive Psychology, 2003, 15, 511-537.                                       | 1.3 | 19        |
| 108 | Traveling down the road: from cognitive neuroscience to mathematics education … and back. ZDM -<br>International Journal on Mathematics Education, 2010, 42, 649-654.                                                  | 2.2 | 19        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Upper elementary school children's understanding and solution of a quantitative problem inside and outside the mathematics class. Learning and Instruction, 2011, 21, 770-780.                                 | 3.2 | 19        |
| 110 | The Transition from Natural to Rational Number Knowledge. , 2017, , 101-123.                                                                                                                                   |     | 19        |
| 111 | Young Children's Patterning Competencies and Mathematical Development: A Review. , 2019, , 139-161.                                                                                                            |     | 19        |
| 112 | On the misinterpretation of histograms and box plots. Educational Psychology, 2013, 33, 155-174.                                                                                                               | 2.7 | 18        |
| 113 | Can visual aids in representational illustrations help pupils to solve mathematical word problems more realistically?. European Journal of Psychology of Education, 2017, 32, 335-351.                         | 2.6 | 18        |
| 114 | THE RELATION BETWEEN LEARNERS' SPONTANEOUS FOCUSING ON QUANTITATIVE RELATIONS AND THEIR RATIONAL NUMBER KNOWLEDGE. Studia Psychologica, 2016, 58, 156-170.                                                     | 0.5 | 18        |
| 115 | Subtraction by addition strategy use in children of varying mathematical achievement level: A choice/no-choice study. Journal of Numerical Cognition, 2018, 4, 215-234.                                        | 1.2 | 18        |
| 116 | The predictive power of intuitive rules: A critical analysis of the impact of `more A–more B' and `same<br>A–same B'. Educational Studies in Mathematics, 2004, 56, 179-207.                                   | 2.8 | 17        |
| 117 | Influencia del conocimiento matemático y situacional en la resolución de problemas aritméticos<br>verbales: ayudas textuales y gráficas. Infancia Y Aprendizaje, 2008, 31, 463-483.                            | 0.9 | 17        |
| 118 | What the eyes already †know': using eye movement measurement to tap into children's implicit<br>numerical magnitude representations. Infant and Child Development, 2010, 19, 175-186.                          | 1.5 | 17        |
| 119 | The Numerical Stroop Effect in Primary School Children: A Comparison of Low, Normal, and High Achievers. Child Neuropsychology, 2010, 16, 461-477.                                                             | 1.3 | 17        |
| 120 | The role of intelligence and feedback in children's strategy competence. Journal of Experimental Child<br>Psychology, 2011, 108, 61-76.                                                                        | 1.4 | 17        |
| 121 | Students' reported justifications for their representational choices in linear function problems: an interview study. Educational Studies, 2013, 39, 104-117.                                                  | 2.4 | 17        |
| 122 | Comparing apples and pears in studies on magnitude estimations. Frontiers in Psychology, 2013, 4, 332.                                                                                                         | 2.1 | 17        |
| 123 | Evaluating the Effect of Labeled Benchmarks on Children's Number Line Estimation Performance and Strategy Use. Frontiers in Psychology, 2017, 8, 1082.                                                         | 2.1 | 17        |
| 124 | Are preschoolers who spontaneously create patterns better in mathematics?. British Journal of Educational Psychology, 2020, 90, 753-769.                                                                       | 2.9 | 17        |
| 125 | The Relationship Between Children's Familiarity with Numbers and Their Performance in Bounded and Unbounded Number Line Estimations. Mathematical Thinking and Learning, 2015, 17, 136-154.                    | 1.2 | 16        |
| 126 | Verbal and actionâ€based measures of kindergartners' SFON and their associations with numberâ€related<br>utterances during picture book reading. British Journal of Educational Psychology, 2018, 88, 550-565. | 2.9 | 16        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Modelling Competencies — Overview. , 2007, , 219-224.                                                                                                                                                              |     | 16        |
| 128 | Unraveling the Relationship Between Students' Mathematics-Related Beliefs and the Classroom<br>Culture. European Psychologist, 2008, 13, 24-36.                                                                    | 3.1 | 16        |
| 129 | The Effect of Semantic Structure on First Graders' Strategies for Solving Addition and Subtraction Word Problems. Journal for Research in Mathematics Education, 1987, 18, 363-381.                                | 1.8 | 16        |
| 130 | Adults' use of subtraction by addition. Acta Psychologica, 2010, 135, 323-329.                                                                                                                                     | 1.5 | 15        |
| 131 | Children's use of addition to solve twoâ€digit subtraction problems. British Journal of Psychology, 2013, 104, 495-511.                                                                                            | 2.3 | 15        |
| 132 | Children's understanding of the addition/subtraction complement principle. British Journal of Educational Psychology, 2016, 86, 382-396.                                                                           | 2.9 | 15        |
| 133 | How does imposing a step-by-step solution method impact students' approach to mathematical word problem solving?. ZDM - International Journal on Mathematics Education, 2020, 52, 139-149.                         | 2.2 | 15        |
| 134 | Strategic aspects of children's numerosity judgement. European Journal of Psychology of Education, 2001, 16, 233-255.                                                                                              | 2.6 | 14        |
| 135 | A microgenetic study of insightful problem solving. Journal of Experimental Child Psychology, 2008, 99, 210-232.                                                                                                   | 1.4 | 14        |
| 136 | Students' Overuse of Linearity: An Exploration in Physics. Research in Science Education, 2011, 41, 389-412.                                                                                                       | 2.3 | 14        |
| 137 | The role of verbal and performance intelligence in children's strategy selection and execution.<br>Learning and Individual Differences, 2013, 24, 134-138.                                                         | 2.7 | 14        |
| 138 | Subtraction by addition in children with mathematical learning disabilities. Learning and Instruction, 2014, 30, 1-8.                                                                                              | 3.2 | 14        |
| 139 | Number sense in the transition from natural to rational numbers. British Journal of Educational Psychology, 2017, 87, 43-56.                                                                                       | 2.9 | 14        |
| 140 | Spontaneous Focusing on Quantitative Relations: Towards a Characterization. Mathematical Thinking and Learning, 2017, 19, 260-275.                                                                                 | 1.2 | 14        |
| 141 | Early stages of proportional reasoning: a cross-sectional study with 5- to 9-year-olds. European<br>Journal of Psychology of Education, 2020, 35, 529-547.                                                         | 2.6 | 14        |
| 142 | Associations Between Repeating Patterning, Growing Patterning, and Numerical Ability: A Longitudinal<br>Panel Study in 4―to 6‥ear Olds. Child Development, 2021, 92, 1354-1368.                                    | 3.0 | 14        |
| 143 | Children's use of subtraction by addition on large single-digit subtractions. Educational Studies in<br>Mathematics, 2012, 79, 335-349.                                                                            | 2.8 | 13        |
| 144 | The Relationship between Students' Problem Posing and Problem Solving Abilities and Beliefs: A<br>Small-Scale Study with Chinese Elementary School Children. Frontiers of Education in China, 2013, 8,<br>147-161. | 2.2 | 13        |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The importance of specific mathematical language for early proportional reasoning. Early Childhood<br>Research Quarterly, 2021, 55, 193-200.                                                                                                                  | 2.7 | 13        |
| 146 | Stimulating preschoolers' focus on structure in repeating and growing patterns. Learning and Instruction, 2021, 74, 101444.                                                                                                                                   | 3.2 | 13        |
| 147 | Interactive Whiteboards in Mathematics Teaching: A Literature Review. Education Research<br>International, 2014, 2014, 1-16.                                                                                                                                  | 1.1 | 12        |
| 148 | Open word problems: taking the additive or the multiplicative road?. ZDM - International Journal on Mathematics Education, 2018, 50, 91-102.                                                                                                                  | 2.2 | 12        |
| 149 | Effectiveness of the Building Blocks program for enhancing Ecuadorian kindergartners' numerical competencies. Early Childhood Research Quarterly, 2018, 44, 231-241.                                                                                          | 2.7 | 12        |
| 150 | Improving realistic word problem solving by using humor. Journal of Mathematical Behavior, 2019, 53, 96-104.                                                                                                                                                  | 0.9 | 12        |
| 151 | Are children's spontaneous number focusing tendencies related to their home numeracy environment?. ZDM - International Journal on Mathematics Education, 2020, 52, 729-742.                                                                                   | 2.2 | 12        |
| 152 | KNOWLEDGE ON ACCELERATED MOTION AS MEASURED BY IMPLICIT AND EXPLICIT TASKS IN 5 TO 16 YEAR OLDS. International Journal of Science and Mathematics Education, 2011, 9, 25-46.                                                                                  | 2.5 | 11        |
| 153 | Combining Multiple External Representations and Refutational Text: An Intervention on Learning to<br>Interpret Box Plots. International Journal of Science and Mathematics Education, 2015, 13, 909-926.                                                      | 2.5 | 11        |
| 154 | Students' Non-realistic Mathematical Modeling as a Drawback of Teachers' Beliefs About and<br>Approaches to Word Problem Solving. Advances in Mathematics Education, 2015, , 137-156.                                                                         | 0.2 | 11        |
| 155 | Solving arithmetic word problems. An analysis of Spanish textbooks / Resolución de problemas<br>aritm©ticos verbales. Un análisis de los libros de texto españoles. Cultura Y Educación, 2018, 30, 71-104.                                                    | 0.6 | 11        |
| 156 | Towards a better understanding of the potential of interactive whiteboards in stimulating mathematics learning. Learning Environments Research, 2018, 21, 81-107.                                                                                             | 2.8 | 11        |
| 157 | Multi-digit Addition, Subtraction, Multiplication, and Division Strategies. , 2019, , 543-560.                                                                                                                                                                |     | 11        |
| 158 | Disentangling the Mechanisms of Symbolic Number Processing in Adults' Mathematics and Arithmetic<br>Achievement. Cognitive Science, 2019, 43, .                                                                                                               | 1.7 | 11        |
| 159 | Analyzing and Developing Strategy Flexibility in Mathematics Education. , 2011, , 175-197.                                                                                                                                                                    |     | 11        |
| 160 | The remarkably frequent, efficient, and adaptive use of the subtraction by addition strategy: A<br>choice/no-choice study in fourth- to sixth-graders with varying mathematical achievement levels.<br>Learning and Individual Differences, 2022, 93, 102107. | 2.7 | 11        |
| 161 | Flexibility in strategy use: Adaptation of numerosity judgement strategies to task characteristics.<br>European Journal of Cognitive Psychology, 2003, 15, 247-266.                                                                                           | 1.3 | 10        |
| 162 | Using addition to solve large subtractions in the number domain up to 20. Acta Psychologica, 2010, 133, 163-169.                                                                                                                                              | 1.5 | 10        |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Children's Criteria for Representational Adequacy in the Perception of Simple Sonic Stimuli.<br>Cognition and Instruction, 2010, 28, 475-502.                                                                                                                                          | 2.9 | 10        |
| 164 | Neuroscientific studies of mathematical thinking and learning: a critical look from a mathematics education viewpoint. ZDM - International Journal on Mathematics Education, 2016, 48, 385-391.                                                                                        | 2.2 | 10        |
| 165 | Using refutational text in mathematics education. ZDM - International Journal on Mathematics Education, 2017, 49, 509-518.                                                                                                                                                             | 2.2 | 10        |
| 166 | The effect of emphasising the realistic modelling complexity in the text or picture on pupils' realistic solutions of P-items. Educational Psychology, 2017, 37, 1173-1185.                                                                                                            | 2.7 | 10        |
| 167 | Word Problems in Mathematics Education. , 2014, , 641-645.                                                                                                                                                                                                                             |     | 10        |
| 168 | Benchmark-based strategy use in atypical number lines Canadian Journal of Experimental Psychology, 2018, 72, 253-263.                                                                                                                                                                  | 0.8 | 10        |
| 169 | The Development of Symbolic and Non-Symbolic Number Line Estimations: Three Developmental<br>Accounts Contrasted Within Cross-Sectional and Longitudinal Data. Psychologica Belgica, 2016, 56,<br>382-405.                                                                             | 1.9 | 10        |
| 170 | Using Retelling Data to Study Elementary School Children's Representations and Solutions of Compare Problems. Journal for Research in Mathematics Education, 1994, 25, 141-165.                                                                                                        | 1.8 | 10        |
| 171 | Do First Graders Make Efficient Use of External Number Representations? The Case of the Twenty-Frame. Cognition and Instruction, 2014, 32, 353-373.                                                                                                                                    | 2.9 | 9         |
| 172 | The effect of rewording and dyadic interaction on realistic reasoning in solving word problems.<br>Journal of Mathematical Behavior, 2017, 46, 1-12.                                                                                                                                   | 0.9 | 9         |
| 173 | There is more variation within than across domains: an interview with Paul A. Kirschner about<br>applying cognitive psychology-based instructional design principles in mathematics teaching and<br>learning. ZDM - International Journal on Mathematics Education, 2017, 49, 637-643. | 2.2 | 9         |
| 174 | The Power of Interactive Whiteboards for Secondary Mathematics Teaching: Two Case Studies.<br>Journal of Educational Technology Systems, 2018, 47, 50-78.                                                                                                                              | 5.8 | 9         |
| 175 | Estimation of â€~real' numerosities in elementary school children. European Journal of Psychology of<br>Education, 2008, 23, 319-338.                                                                                                                                                  | 2.6 | 8         |
| 176 | Early number and arithmetic performance of Ecuadorian 4-5-year-olds. Educational Studies, 2015, 41, 565-586.                                                                                                                                                                           | 2.4 | 8         |
| 177 | Investigating the quality of project-based science and technology learning environments in elementary school: a critical review of instruments. Studies in Science Education, 2016, 52, 1-27.                                                                                          | 5.4 | 8         |
| 178 | The natural number bias and its role in rational number understanding in children with dyscalculia.<br>Delay or deficit?. Research in Developmental Disabilities, 2017, 71, 181-190.                                                                                                   | 2.2 | 8         |
| 179 | Gradeâ€related differences in strategy use in multidigit division in two instructional settings. British<br>Journal of Developmental Psychology, 2018, 36, 169-187.                                                                                                                    | 1.7 | 8         |
| 180 | Beyond additive and multiplicative reasoning abilities: how preference enters the picture. European<br>Journal of Psychology of Education, 2018, 33, 559-576.                                                                                                                          | 2.6 | 8         |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Word problem solving approaches in mathematics textbooks: a comparison between Singapore and Spain. European Journal of Psychology of Education, 2020, 35, 567-587.                              | 2.6 | 8         |
| 182 | Adapting Strategy Choices to Situational Factors: The Effect of Time Pressure on Children's<br>Numerosity Judgement Strategies. Psychologica Belgica, 2020, 43, 269.                             | 1.9 | 8         |
| 183 | The development of mathematical competence in Flemish preservice elementary school teachers.<br>Teaching and Teacher Education, 2005, 21, 49-63.                                                 | 3.2 | 7         |
| 184 | Discriminating Non-linearity from Linearity: Its Cognitive Foundations in Five-Year-Olds. Mathematical<br>Thinking and Learning, 2010, 12, 4-19.                                                 | 1.2 | 7         |
| 185 | Fifth-grade students' approaches to and beliefs of mathematics word problem solving: a large sample<br>Hungarian study. ZDM - International Journal on Mathematics Education, 2011, 43, 561-571. | 2.2 | 7         |
| 186 | Interpreting histograms. As easy as it seems?. European Journal of Psychology of Education, 2014, 29, 557-575.                                                                                   | 2.6 | 7         |
| 187 | Applying cognitive psychology based instructional design principles in mathematics teaching and learning: introduction. ZDM - International Journal on Mathematics Education, 2017, 49, 491-496. | 2.2 | 7         |
| 188 | Whole Number Thinking, Learning and Development: Neuro-cognitive, Cognitive and Developmental<br>Approaches. New ICMI Study Series, 2018, , 137-167.                                             | 1.0 | 7         |
| 189 | To add or to multiply? An investigation of the role of preference in children's solutions of word problems. Learning and Instruction, 2019, 61, 60-71.                                           | 3.2 | 7         |
| 190 | Intuitive errors in learners' fraction understanding: A dual-process perspective on the natural number bias. Memory and Cognition, 2020, 48, 1171-1180.                                          | 1.6 | 7         |
| 191 | The association between symbolic and nonsymbolic numerical magnitude processing and mental versus algorithmic subtraction in adults. Acta Psychologica, 2016, 165, 34-42.                        | 1.5 | 6         |
| 192 | The power of refutational text: changing intuitions about the interpretation of box plots. European<br>Journal of Psychology of Education, 2017, 32, 537-550.                                    | 2.6 | 6         |
| 193 | The mathematical, motivational, and cognitive characteristics of high mathematics achievers in primary school Journal of Educational Psychology, 2022, 114, 992-1004.                            | 2.9 | 6         |
| 194 | The relative importance of children's criteria for representational adequacy in the perception of simple sonic stimuli. Psychology of Music, 2013, 41, 691-712.                                  | 1.6 | 5         |
| 195 | Experts' Misinterpretation of Box Plots – a Dual Processing Approach. Psychologica Belgica, 2014, 54,<br>395-405.                                                                                | 1.9 | 5         |
| 196 | The early development of proportional reasoning: A longitudinal study of 5- to 8-year-olds Journal of<br>Educational Psychology, 2022, 114, 1343-1358.                                           | 2.9 | 5         |
| 197 | Cognitive change as strategy change. , 2005, , 186-216.                                                                                                                                          |     | 4         |
| 198 | Ecuadorian kindergartners' numerical development: contribution of SES, quality of early mathematics<br>education, and school type. Educacao E Pesquisa, 2018, 44, .                              | 0.4 | 4         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | To add or to multiply in open problems? Unraveling children's relational preference using a<br>mixed-method approach. Educational Studies in Mathematics, 2020, 104, 405-430.                         | 2.8 | 4         |
| 200 | Chinese upper elementary school mathematics teachers' attitudes towards the place and value of problematic word problems in mathematics education. Frontiers of Education in China, 2011, 6, 449-469. | 2.2 | 3         |
| 201 | Who is granted authority in the mathematics classroom? An analysis of the observed and perceived distribution of authority. Educational Studies, 2012, 38, 223-234.                                   | 2.4 | 3         |
| 202 | Do students confuse dimensionality and "directionality�. Journal of Mathematical Behavior, 2014, 36, 166-176.                                                                                         | 0.9 | 3         |
| 203 | Processing of Situational Information in Story Problem Texts. An Analysis from On-Line Measures.<br>Spanish Journal of Psychology, 2014, 17, E8.                                                      | 2.1 | 3         |
| 204 | Content integration as a factor in math-game effectiveness. Educational Technology Research and Development, 2017, 65, 1345-1368.                                                                     | 2.8 | 3         |
| 205 | Ecuadorian children's repeating patterning abilities and its association with early mathematical abilities. European Journal of Psychology of Education, 2021, 36, 945-964.                           | 2.6 | 3         |
| 206 | Spontaneous focusing on Arabic number symbols: A unique component of children's early mathematical development?. Mathematical Thinking and Learning, 2022, 24, 38-51.                                 | 1.2 | 3         |
| 207 | Spontaneous mathematical focusing tendencies in mathematical development. Mathematical Thinking and Learning, 2020, 22, 249-257.                                                                      | 1.2 | 3         |
| 208 | The development of computational estimation in the transition from informal to formal mathematics education. European Journal of Psychology of Education, 2021, 36, 845-864.                          | 2.6 | 3         |
| 209 | Subtraction by addition: A remarkably natural and clever way to subtract?. , 2021, , 117-141.                                                                                                         |     | 3         |
| 210 | Special Needs in Research and Instruction in Whole Number Arithmetic. New ICMI Study Series, 2018, , 375-397.                                                                                         | 1.0 | 3         |
| 211 | Refutational text and multiple external representations as a method to remediate the misinterpretation of box plots. Educational Psychology, 2017, 37, 1281-1300.                                     | 2.7 | 3         |
| 212 | The role of relational preference in word-problem solving in 6- to 7-year-olds. Educational Studies in Mathematics, 0, , 1.                                                                           | 2.8 | 3         |
| 213 | Proportional Word Problem Solving Through a Modeling Lens: A Half-Empty or Half-Full Glass?. , 2016, , 209-229.                                                                                       |     | 2         |
| 214 | Comparing eye fixation and mouse cursor response modes in number line estimation. Journal of Cognitive Psychology, 2020, 32, 827-840.                                                                 | 0.9 | 2         |
| 215 | Exact arithmetic, computational estimation and approximate arithmetic are different skills: Evidence from a study with 5â€yearâ€olds. Infant and Child Development, 2021, 30, e2248.                  | 1.5 | 2         |
| 216 | Longitudinal associations between spontaneous number focusing tendencies, numerical abilities, and mathematics achievement in 4- to 7-year-olds Journal of Educational Psychology, 2022, 114, 37-55.  | 2.9 | 2         |

| #   | Article                                                                                                                                                                                                                                    | IF          | CITATIONS     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| 217 | Influencia del nivel socioeconómico en el desarrollo de las competencias numéricas de los niños<br>ecuatorianos de jardÃn infantil. Perfiles Educativos, 2019, 41, .                                                                       | 0.4         | 2             |
| 218 | Spontaneous focusing on Arabic number symbols: A unique component of children's early<br>mathematical development?. Mathematical Thinking and Learning, 2020, 22, 281-295.                                                                 | 1.2         | 1             |
| 219 | Upper Elementary School Children's Adaptive Use of Subtraction by Addition: A Choice/No-Choice<br>Replication Study Involving Two Choice Conditions. Implementation and Replication Studies in<br>Mathematics Education, 2021, 1, 111-138. | 0.6         | 1             |
| 220 | Comparison of the level of authenticity of arithmetic word problems in Spanish and Singaporean<br>textbooks ( <i>Comparación del nivel de autenticidad de los problemas aritméticos verbales de los) Tj ETQq0 (</i>                        | ) OorgBT /C | )v∉rlock 10 T |
| 221 | The Long and Winding Road to Educationally Relevant Cognitive Neuroscience. Zeitschrift Fur<br>Psychologie / Journal of Psychology, 2016, 224, 312-312.                                                                                    | 1.0         | 1             |
| 222 | The structure of the notation system in adults' number line estimation: An eye-tracking study.<br>Quarterly Journal of Experimental Psychology, 2023, 76, 538-553.                                                                         | 1.1         | 1             |
| 223 | Children's Picture Books: A Systematic Analysis of Features in the Domain of Mathematics. Early Education and Development, 0, , 1-20.                                                                                                      | 2.6         | 1             |
| 224 | Which skills predict computational estimation? A longitudinal study in 5- to 7-year-olds. European<br>Journal of Psychology of Education, 2022, 37, 19-38.                                                                                 | 2.6         | 0             |
| 225 | Enfoque espontÃ;neo en estructuras matemÃ;ticas: patrones y clasificación. Podium, 2021, , 125-142.                                                                                                                                        | 0.2         | 0             |