
Tribidasari A Ivandini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4924817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core–shell copper-gold nanoparticles modified at the boron-doped diamond electrode for oxygen sensors. Analytical Methods, 2022, 14, 726-733.	2.7	3
2	Electrochemical Preparation of Highly Oriented Microporous Structure Nickel Oxide Films as Promising Electrodes in Urea Oxidation. Chemistry Letters, 2022, 51, 135-138.	1.3	5
3	Electrogenerated chemiluminescence of luminol at a boron-doped diamond electrode for the detection of hypochlorite. Analyst, The, 2022, 147, 2696-2702.	3.5	10
4	Enzymatic Biosensors with Electrochemiluminescence Transduction. ChemElectroChem, 2022, 9, .	3.4	19
5	Coexposed TiO2's (001) and (101) facets in TiO2/BiVO4 photoanodes for an enhanced photocatalytic fuel cell. Applied Surface Science, 2021, 542, 148746.	6.1	24
6	Electrogenerated Chemiluminescence of Luminol Mediated by Carbonate Electrochemical Oxidation at a Boron-Doped Diamond. Analytical Chemistry, 2021, 93, 2336-2341.	6.5	34
7	Novel NiO nanoparticles via phytosynthesis method: Structural, morphological and optical properties. Journal of Molecular Structure, 2021, 1227, 129543.	3.6	41
8	Modification of boron-doped diamond electrodes with gold–palladium nanoparticles for an oxygen sensor. Analyst, The, 2021, 146, 2842-2850.	3.5	9
9	A novel way of the synthesis of three-dimensional (3D) MoS2 cauliflowers using allicin. Chemical Physics Letters, 2021, 767, 138345.	2.6	7
10	Poly(methyl orange)-modified NiO/MoS2/SPCE for a non-enzymatic detection of cholesterol. FlatChem, 2021, 29, 100285.	5.6	17
11	Electrochemical Sensing Applications Using Diamond Microelectrodes. Bulletin of the Chemical Society of Japan, 2021, 94, 2838-2847.	3.2	2
12	Nickel–Cobalt Modified Boron-Doped Diamond as an Electrode for a Urea/H ₂ O ₂ Fuel Cell. Bulletin of the Chemical Society of Japan, 2021, 94, 2922-2928.	3.2	4
13	Recent progress in direct urea fuel cell. Open Chemistry, 2021, 19, 1116-1133.	1.9	8
14	A green synthesis of gold–palladium core–shell nanoparticles using orange peel extract through two-step reduction method and its formaldehyde colorimetric sensing performance. Nano Structures Nano Objects, 2020, 24, 100535.	3.5	32
15	A synergy of CdSe sensitization and exposure of TiO2 (0Â0Â1) facet in CdSe-TiO2 nanostructures for photoreduction of bicarbonate. Inorganic Chemistry Communication, 2020, 118, 107992.	3.9	8
16	β-Cyclodextrin/Fe3O4 nanocomposites for an electrochemical non-enzymatic cholesterol sensor. Analytical Methods, 2020, 12, 3454-3461.	2.7	18
17	Improving the CO2 electrochemical reduction to formic acid using iridium-oxide-modified boron-doped diamond electrodes. Diamond and Related Materials, 2020, 106, 107874.	3.9	22
18	Stable iridium-modified boron-doped diamond electrode for the application in electrochemical detection of arsenic (III). Materials Chemistry and Physics, 2020, 244, 122723.	4.0	33

#	Article	IF	CITATIONS
19	Nano-Cu Modified Cu and Nano-Cu Modified Graphite Electrodes for Chemical Oxygen Demand Sensors. Analytical Sciences, 2020, 36, 1323-1327.	1.6	5
20	Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renewable and Sustainable Energy Reviews, 2019, 113, 109246.	16.4	123
21	Electrochemical oxidation of palmitic acid solution using boron-doped diamond electrodes. Diamond and Related Materials, 2019, 99, 107464.	3.9	16
22	Exposing TiO2 (001) crystal facet in nano Au-TiO2 heterostructures for enhanced photodegradation of methylene blue. Applied Surface Science, 2019, 487, 1376-1384.	6.1	57
23	Influence of Surface Orientation on Electrochemical Properties of Boron-Doped Diamond. Journal of Physical Chemistry C, 2019, 123, 5336-5344.	3.1	52
24	Iridium oxide (IV) nanoparticle-based lateral flow immunoassay. Biosensors and Bioelectronics, 2019, 132, 132-135.	10.1	38
25	Modification of Boron-doped Diamond Electrodes with Platinum to Increase the Stability and Sensitivity of Haemoglobin-based Acrylamide Sensors. Sensors and Materials, 2019, 31, 1105.	0.5	12
26	Production of a polyclonal antibody against acrylamide for immunochromatographic detection of acrylamide using strip tests. Journal of Advanced Veterinary and Animal Research, 2019, 6, 366.	1.2	3
27	CdS Nanoparticle-based Biosensor Development for Aflatoxin Determination. International Journal of Technology, 2019, 10, 787.	0.8	1
28	Preparation of gold-palladium modified boron-doped diamond electrode and its preliminary test for oxygen sensors. AIP Conference Proceedings, 2018, , .	0.4	4
29	Anodic stripping voltammetry of Ni(OH)2 nanoparticles in acid solution using boron-doped diamond electrodes. AIP Conference Proceedings, 2018, , .	0.4	1
30	Modification of nitrogen-terminated boron-doped diamond electrodes with gold nanoparticles and hemoglobin for acrylamide biosensors. AIP Conference Proceedings, 2018, , .	0.4	1
31	Purification and characterization of polyclonal antibody against acrylamide. AIP Conference Proceedings, 2018, , .	0.4	0
32	Potential electrical energy production of urine at nickel-modified boron-doped diamond electrodes. AIP Conference Proceedings, 2018, , .	0.4	0
33	Hypochlorous Acid Sensor using Boron-Doped Diamond Electrode in Physiological pH Solution. , 2018, , .		1
34	Preparation of iridium-modified boron-doped diamond (BDD) electrodes for electroreduction of CO2. AIP Conference Proceedings, 2018, , .	0.4	3
35	The Synthesis of Gold Nanoparticles with Allyl Mercaptan as the Capping Agent to Modify Boron-Doped Diamond Surface for An Application As Oxygen Sensors. , 2018, , .		1
36	Electrochemical conversion of CO2 at metal-modified boron-doped diamond electrodes. AIP Conference Proceedings, 2018, , .	0.4	6

Tribidasari A Ivandini

#	Article	IF	CITATIONS
37	Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chemical Communications, 2017, 53, 1338-1347.	4.1	78
38	Heavy Metal Sensing Based on Diamond Electrodes. Springer Series on Chemical Sensors and Biosensors, 2017, , 67-86.	0.5	4
39	Diamond Electrochemistry. , 2017, , .		2
40	Electroreduction of CO2 using copper-deposited on boron-doped diamond (BDD). AIP Conference Proceedings, 2016, , .	0.4	11
41	Anodic stripping voltammetry of synthesized CdS nanoparticles at boron-doped diamond electrodes. AIP Conference Proceedings, 2016, , .	0.4	1
42	Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Scientific Reports, 2016, 6, 32429.	3.3	33
43	Zanamivir immobilized magnetic beads for voltammetric measurement of neuraminidase at gold-modified boron doped diamond electrode. AIP Conference Proceedings, 2016, , .	0.4	0
44	The effect of the crosslinker variation towards the low critical solution temperature of poly(N-isopropylacrylamide) polymer. AIP Conference Proceedings, 2016, , .	0.4	1
45	Screening metal nanoparticles using boron-doped diamond microelectrodes. AIP Conference Proceedings, 2016, , .	0.4	0
46	Surface Termination Effect of Boronâ€Doped Diamond on the Electrochemical Oxidation of Adenosine Phosphate. Electroanalysis, 2016, 28, 177-182.	2.9	32
47	Development of neuraminidase detection using gold nanoparticles boron-doped diamond electrodes. Analytical Biochemistry, 2016, 497, 68-75.	2.4	19
48	Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosensors and Bioelectronics, 2016, 75, 365-374.	10.1	71
49	Magnetic Enzymatic Platform for Organophosphate Pesticide Detection Using Boron-doped Diamond Electrodes. Analytical Sciences, 2015, 31, 1061-1068.	1.6	14
50	Yeast-based Biochemical Oxygen Demand Sensors Using Gold-modified Boron-doped Diamond Electrodes. Analytical Sciences, 2015, 31, 643-649.	1.6	24
51	Electrochemical Behavior of Zanamivir at Gold-Modified Boron-Doped Diamond Electrodes for an Application in Neuraminidase Sensing. Electrochemistry, 2015, 83, 357-362.	1.4	19
52	Anodic stripping voltammetry of gold nanoparticles at boron-doped diamond electrodes and its application in immunochromatographic strip tests. Talanta, 2015, 134, 136-143.	5.5	28
53	Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diamond and Related Materials, 2014, 48, 88-95.	3.9	52
54	Synthesis of Biodiesel Using a Two-compartments Electrochemical Cell. Chemistry Letters, 2014, 43, 1292-1293.	1.3	12

#	Article	IF	CITATIONS
55	An electrolyte-free system for ozone generation using heavily boron-doped diamond electrodes. Diamond and Related Materials, 2013, 40, 7-11.	3.9	55
56	Controlling the diffusion profile of electroactive species for selective anodic stripping voltammetry of cadmium at boron-doped diamond electrodes. Physical Chemistry Chemical Physics, 2013, 15, 142-147.	2.8	15
57	Development of Electrolyte-Free Ozone Sensors Using Boron-Doped Diamond Electrodes. Analytical Chemistry, 2013, 85, 4284-4288.	6.5	42
58	Electrochemical Detection of Selenium (IV) and (VI) at Gold-Modified Diamond Electrodes. Electrocatalysis, 2013, 4, 367-374.	3.0	18
59	Development of a Biochemical Oxygen Demand Sensor Using Gold-Modified Boron Doped Diamond Electrodes. Analytical Chemistry, 2012, 84, 9825-9832.	6.5	44
60	Selective Detection of As(V) with High Sensitivity by As-deposited Boron-doped Diamond Electrodes. Chemistry Letters, 2010, 39, 1055-1057.	1.3	17
61	Development of amperometric arsine gas sensor using gold-modified diamond electrodes. Journal of Electroanalytical Chemistry, 2010, 645, 58-63.	3.8	34
62	Electrochemical detection of free chlorine at highly boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 2008, 612, 29-36.	3.8	128
63	Direct electrochemical oxidation of proteins at conductive diamond electrodes. Journal of Electroanalytical Chemistry, 2008, 612, 201-207.	3.8	67
64	Anodic stripping voltammetry of inorganic species of As3+ and As5+ at gold-modified boron doped diamond electrodes. Journal of Electroanalytical Chemistry, 2008, 615, 145-153.	3.8	76
65	Development of Amperometric Immunosensor Using Boron-Doped Diamond with Poly(o-aminobenzoic) Tj ETQq	l 1.0.7843 6.5	314 rgBT /Ove
66	Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography. Talanta, 2007, 71, 648-655.	5.5	119
67	Fabrication, Characterization, and Application of Boron-Doped Diamond Microelectrodes for in Vivo Dopamine Detection. Analytical Chemistry, 2007, 79, 8608-8615.	6.5	223
68	Direct electrochemical detection of sodium azide in physiological saline buffers using highly boron-doped diamond electrodes. Sensors and Actuators B: Chemical, 2007, 120, 500-507.	7.8	27
69	Electrochemical Detection of Arsenic(III) Using Iridium-Implanted Boron-Doped Diamond Electrodes. Analytical Chemistry, 2006, 78, 6291-6298.	6.5	135
70	Electrochemical Oxidation of Oxalic Acid at Highly Boron-Doped Diamond Electrodes. Analytical Chemistry, 2006, 78, 3467-3471.	6.5	132
71	Selective Detection Method Derived from a Controlled Diffusion Process at Metal-Modified Diamond Electrodes. Analytical Chemistry, 2006, 78, 7857-7860.	6.5	72
72	Gold-nanoparticle-dispersed Boron-doped Diamond Electrodes for Electrochemical Oxidation of Oxalic Acid. Chemistry Letters, 2005, 34, 1086-1087.	1.3	17

#	Article	IF	CITATIONS
73	Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection of hydrogen peroxide. Diamond and Related Materials, 2005, 14, 2133-2138.	3.9	65
74	Electroanalytical application of modified diamond electrodes. Diamond and Related Materials, 2004, 13, 2003-2008.	3.9	69
75	Pt-implanted Boron-doped Diamond Electrodes for Electrochemical Oxidation of Hydrogen Peroxide. Chemistry Letters, 2004, 33, 1330-1331.	1.3	17