
Anne-Catherine Prats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4924736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1836-1840.	7.1	444
2	Alternative Translation of Human Fibroblast Growth Factor 2 mRNA Occurs by Internal Entry of Ribosomes. Molecular and Cellular Biology, 1995, 15, 35-44.	2.3	327
3	Two Independent Internal Ribosome Entry Sites Are Involved in Translation Initiation of Vascular Endothelial Growth Factor mRNA. Molecular and Cellular Biology, 1998, 18, 6178-6190.	2.3	276
4	p53 Acts as a Safeguard of Translational Control by Regulating Fibrillarin and rRNA Methylation in Cancer. Cancer Cell, 2013, 24, 318-330.	16.8	246
5	Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biology of the Cell, 2003, 95, 169-178.	2.0	220
6	Alternative Translation of the Proto-oncogene c-mycby an Internal Ribosome Entry Site. Journal of Biological Chemistry, 1997, 272, 32061-32066.	3.4	219
7	A New 34-Kilodalton Isoform of Human Fibroblast Growth Factor 2 Is Cap Dependently Synthesized by Using a Non-AUG Start Codon and Behaves as a Survival Factor. Molecular and Cellular Biology, 1999, 19, 505-514.	2.3	200
8	Dysregulation of Ribosome Biogenesis and Translational Capacity Is Associated with Tumor Progression of Human Breast Cancer Cells. PLoS ONE, 2009, 4, e7147.	2.5	198
9	CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus. Journal of Molecular Biology, 1989, 205, 363-372.	4.2	170
10	A Single Internal Ribosome Entry Site Containing a G Quartet RNA Structure Drives Fibroblast Growth Factor 2 Gene Expression at Four Alternative Translation Initiation Codons. Journal of Biological Chemistry, 2003, 278, 39330-39336.	3.4	151
11	Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells Journal of Cell Biology, 1996, 135, 1391-1402.	5.2	146
12	Fibroblast Growth Factor 2 Internal Ribosome Entry Site (Ires) Activity Ex Vivo and in Transgenic Mice Reveals a Stringent Tissue-Specific Regulation. Journal of Cell Biology, 2000, 150, 275-281.	5.2	138
13	Heterogeneous Nuclear Ribonucleoprotein A1 Is a Novel Internal Ribosome Entry Site trans-Acting Factor That Modulates Alternative Initiation of Translation of the Fibroblast Growth Factor 2 mRNA. Journal of Biological Chemistry, 2005, 280, 4144-4153.	3.4	134
14	IRES Trans-Acting Factors, Key Actors of the Stress Response. International Journal of Molecular Sciences, 2019, 20, 924.	4.1	112
15	Alternative Translation Initiation of the Moloney Murine Leukemia Virus mRNA Controlled by Internal Ribosome Entry Involving the p57/PTB Splicing Factor. Journal of Biological Chemistry, 1995, 270, 20376-20383.	3.4	108
16	Replication of pSC101: effects of mutations in the E. coli DNA binding protein IHF. Molecular Genetics and Genomics, 1986, 204, 85-89.	2.4	107
17	Unr Is Required In Vivo for Efficient Initiation of Translation from the Internal Ribosome Entry Sites of both Rhinovirus and Poliovirus. Journal of Virology, 2003, 77, 3353-3359.	3.4	106
18	p53 directly transactivates Δ133p53α, regulating cell fate outcome in response to DNA damage. Cell Death and Differentiation, 2011, 18, 248-258.	11.2	103

#	Article	IF	CITATIONS
19	Hypoxia Induces VEGF-C Expression in Metastatic Tumor Cells via a HIF-1α-Independent Translation-Mediated Mechanism. Cell Reports, 2014, 6, 155-167.	6.4	102
20	Viral RNA annealing activities of the nucleocapsid protein of Moloney murine leukemia virus are zinc independent. Nucleic Acids Research, 1991, 19, 3533-3541.	14.5	95
21	p53 mutant breast cancer patients expressing p53 ^{ĵ3} have as good a prognosis as wild-type p53 breast cancer patients. Breast Cancer Research, 2011, 13, R7.	5.0	92
22	Circular RNA, the Key for Translation. International Journal of Molecular Sciences, 2020, 21, 8591.	4.1	92
23	c- myc Internal Ribosome Entry Site Activity Is Developmentally Controlled and Subjected to a Strong Translational Repression in Adult Transgenic Mice. Molecular and Cellular Biology, 2001, 21, 1833-1840.	2.3	89
24	Periprostatic Adipose Tissue Favors Prostate Cancer Cell Invasion in an Obesity-Dependent Manner: Role of Oxidative Stress. Molecular Cancer Research, 2019, 17, 821-835.	3.4	76
25	cis-acting elements involved in the alternative translation initiation process of human basic fibroblast growth factor mRNA Molecular and Cellular Biology, 1992, 12, 4796-4805.	2.3	75
26	The p53 isoform, Δ133p53α, stimulates angiogenesis and tumour progression. Oncogene, 2013, 32, 2150-2160	. 5.9	75
27	Expression of Human Fibroblast Growth Factor 2 mRNA Is Post-transcriptionally Controlled by a Unique Destabilizing Element Present in the 3′-Untranslated Region between Alternative Polyadenylation Sites. Journal of Biological Chemistry, 1999, 274, 21402-21408.	3.4	68
28	Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction. JCI Insight, 2017, 2, .	5.0	68
29	FGF2 Translationally Induced by Hypoxia Is Involved in Negative and Positive Feedback Loops with HIF-1α. PLoS ONE, 2008, 3, e3078.	2.5	65
30	Translational Induction of VEGF Internal Ribosome Entry Site Elements During the Early Response to Ischemic Stress. Circulation Research, 2007, 100, 305-308.	4.5	64
31	New Ways of Initiating Translation in Eukaryotes?. Molecular and Cellular Biology, 2001, 21, 8238-8246.	2.3	60
32	Internal Ribosome Entry Site Structural Motifs Conserved among Mammalian Fibroblast Growth Factor 1 Alternatively Spliced mRNAs. Molecular and Cellular Biology, 2004, 24, 7622-7635.	2.3	60
33	Role of Fibroblast Growth Factor-2 Isoforms in the Effect of Estradiol on Endothelial Cell Migration and Proliferation. Circulation Research, 2004, 94, 1301-1309.	4.5	56
34	Use and comparison of different internal ribosomal entry sites (IRES) in tricistronic retroviral vectors. BMC Biotechnology, 2004, 4, 16.	3.3	56
35	Translational control of gene expression: Role of IRESs and consequences for cell transformation and angiogenesis. Progress in Molecular Biology and Translational Science, 2002, 72, 367-413.	1.9	51
36	How are circRNAs translated by non-canonical initiation mechanisms?. Biochimie, 2019, 164, 45-52.	2.6	50

#	Article	IF	CITATIONS
37	Testosterone regulates FGFâ€2 expression during testis maturation by an IRESâ€dependent translational mechanism. FASEB Journal, 2006, 20, 476-478.	0.5	49
38	Tumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism. Oncogene, 2001, 20, 1669-1677.	5.9	48
39	p53 directs conformational change and translation initiation blockade of human fibroblast growth factor 2 mRNA. Oncogene, 2001, 20, 4613-4620.	5.9	47
40	Antiangiogenic Properties of Fibstatin, an Extracellular FGF-2–Binding Polypeptide. Cancer Research, 2004, 64, 7507-7512.	0.9	47
41	Lymphatic Vasculature Requires Estrogen Receptor-α Signaling to Protect From Lymphedema. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1346-1357.	2.4	47
42	Hypothalamic Apelin/Reactive Oxygen Species Signaling Controls Hepatic Glucose Metabolism in the Onset of Diabetes. Antioxidants and Redox Signaling, 2014, 20, 557-573.	5.4	44
43	Estrogens and atherosclerosis. European Journal of Endocrinology, 2004, 150, 113-117.	3.7	42
44	Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis. Molecular and Cellular Oncology, 2015, 2, e1024821.	0.7	41
45	Local production of tenascin-C acts as a trigger for monocyte/macrophage recruitment that provokes cardiac dysfunction. Cardiovascular Research, 2018, 114, 123-137.	3.8	38
46	Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression. OncoImmunology, 2018, 7, e1395123.	4.6	37
47	Alternative Translation Initiation of Human Fibroblast Growth Factor 2 mRNA Controlled by Its 3′-Untranslated Region Involves a Poly(A) Switch and a Translational Enhancer. Journal of Biological Chemistry, 2000, 275, 19361-19367.	3.4	34
48	Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis. Molecular and Cellular Oncology, 2014, 1, e29907.	0.7	33
49	Paclitaxel induces lymphatic endothelial cells autophagy to promote metastasis. Cell Death and Disease, 2019, 10, 956.	6.3	32
50	Translation of the human c-myc P0 tricistronic mRNA involves two independent internal ribosome entry sites. Oncogene, 2001, 20, 4270-4280.	5.9	31
51	Fibroblast growth factor 1 induced during myogenesis by a transcription–translation coupling mechanism. Nucleic Acids Research, 2009, 37, 5267-5278.	14.5	31
52	Dachsous1–Fat4 Signaling Controls Endothelial Cell Polarization During Lymphatic Valve Morphogenesis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1732-1735.	2.4	31
53	A High Inorganic Phosphate Diet Perturbs Brain Growth, Alters Akt-ERK Signaling, and Results in Changes in Cap-Dependent Translation. Toxicological Sciences, 2006, 90, 221-229.	3.1	30
54	CXCL4L1–fibstatin cooperation inhibits tumor angiogenesis, lymphangiogenesis and metastasis. Microvascular Research, 2013, 89, 25-33.	2.5	29

#	Article	IF	CITATIONS
55	Hyperglycemia upregulates translation of the fibroblast growth factor 2 mRNA in mouse aorta via internal ribosome entry site. FASEB Journal, 2004, 18, 1583-1585.	0.5	27
56	Nucleolin Promotes Heat Shock–Associated Translation of VEGF-D to Promote Tumor Lymphangiogenesis. Cancer Research, 2016, 76, 4394-4405.	0.9	26
57	Internal ribosome entry site-based vectors for combined gene therapy. World Journal of Experimental Medicine, 2015, 5, 11.	1.7	26
58	Potent activation of FGF-2 IRES-dependent mechanism of translation during brain development. Rna, 2008, 14, 1852-1864.	3.5	25
59	Pyrimidine tract binding protein and La autoantigen interact differently with the 5′ untranslated regions of lentiviruses and oncoretrovirus mRNAs. FEBS Letters, 2001, 490, 54-58.	2.8	23
60	A plasmid vector allowing positive selection of recombinant plasmids in Streptococcus pneumoniae. Gene, 1985, 39, 41-48.	2.2	21
61	IRES-based Vector Coexpressing FGF2 and Cyr61 Provides Synergistic and Safe Therapeutics of Lower Limb Ischemia. Molecular Therapy, 2009, 17, 2010-2019.	8.2	21
62	Hyperrecombination at a specific DNA sequence in pneumococcal transformation Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5184-5188.	7.1	20
63	Therapeutic Benefit and Gene Network Regulation by Combined Gene Transfer of Apelin, FGF2, and SERCA2a into Ischemic Heart. Molecular Therapy, 2018, 26, 902-916.	8.2	20
64	IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochemical Society Transactions, 2006, 34, 17-21.	3.4	19
65	Promoter-Dependent Translation Controlled by p54nrb and hnRNPM during Myoblast Differentiation. PLoS ONE, 2015, 10, e0136466.	2.5	19
66	Vasohibin1, a new mouse cardiomyocyte IRES trans-acting factor that regulates translation in early hypoxia. ELife, 2019, 8, .	6.0	19
67	Long term expression of bicistronic vector driven by the FGF-1 IRES in mouse muscle. BMC Biotechnology, 2007, 7, 74.	3.3	17
68	Pre-Conditioning Methods and Novel Approaches with Mesenchymal Stem Cells Therapy in Cardiovascular Disease. Cells, 2022, 11, 1620.	4.1	17
69	Low dietary inorganic phosphate affects the brain by controlling apoptosis, cell cycle and protein translation. Journal of Nutritional Biochemistry, 2008, 19, 16-25.	4.2	15
70	Efficient gene transfer in skeletal muscle with AAV-derived bicistronic vector using the FGF-1 IRES. Gene Therapy, 2008, 15, 1090-1098.	4.5	12
71	Therapeutic Benefits and Adverse Effects ofÂCombined Proangiogenic Gene Therapy inÂMouse Critical Leg Ischemia. Annals of Vascular Surgery, 2017, 40, 252-261.	0.9	12
72	The use ofÂIRES-based bicistronic vectors allows theÂstable expression ofÂrecombinant G-protein coupled receptors such asÂNPY5 andÂhistamine 4. Biochimie, 2006, 88, 737-746.	2.6	11

#	Article	IF	CITATIONS
73	Sex Hormones in Lymphedema. Cancers, 2021, 13, 530.	3.7	11
74	High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. International Journal of Molecular Sciences, 2022, 23, 215.	4.1	8
75	Coordinating Effect of VEGFC and Oleic Acid Participates to Tumor Lymphangiogenesis. Cancers, 2021, 13, 2851.	3.7	4
76	D133P53, directly transactivated by p53, prevents p53-mediated apoptosis without inhibiting p53-mediated cell cycle arrest. Breast Cancer Research, 2010, 12, .	5.0	1
77	R22: RÃ1e de l'hypoxie dans la régulation traductionnelle des facteurs de croissance lymphangiogéniques lors du développement tumoral. Bulletin Du Cancer, 2010, 97, S24.	1.6	0
78	HIGH MW FGF2, BUT NOT LOW MW FGF2 NOR VEGF, MEDIATES THE EFFECT OF ESTRADIOL ON REENDOTHELIALIZATION. Journal of Hypertension, 2004, 22, S189.	0.5	0
79	Abstract 3482: Hypoxia induces translational regulation of lymphangiogenic growth factors. , 2011, , .		0
80	FGF-2 : la traduction bat son plein Medecine/Sciences, 1999, 15, 905.	0.2	0
81	Understanding the Translation Regulatory Mechanisms to Improve the Efficiency and the Specificity of Protein Production by the Cell Factory. Cell Engineering, 1999, , 1-37.	0.4	Ο