Harold A Chapman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4923876/publications.pdf

Version: 2024-02-01

53 papers 8,754 citations

39 h-index 51 g-index

58 all docs

58 docs citations

58 times ranked 10132 citing authors

#	Article	IF	CITATIONS
1	Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nature Cell Biology, 2022, 24, 10-23.	10.3	108
2	Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature, 2022, 604, 120-126.	27.8	128
3	Contextual cues from cancer cells govern cancer-associated fibroblast heterogeneity. Cell Reports, 2021, 35, 109009.	6.4	18
4	Nuclear IL-33 as a growth and survival agent within basal cells. Journal of Clinical Investigation, 2021, 131, .	8.2	1
5	Blocking LOXL2 and $TGF\hat{l}^21$ signalling induces collagen I turnover in precision-cut lung slices derived from patients with idiopathic pulmonary fibrosis. Thorax, 2021, 76, 729-732.	5 . 6	28
6	Gli1+ mesenchymal stromal cells form a pathological niche to promote airway progenitor metaplasia in the fibrotic lung. Nature Cell Biology, 2020, 22, 1295-1306.	10.3	62
7	Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nature Communications, 2020, 11, 3559.	12.8	378
8	Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nature Communications, 2020, 11, 4520.	12.8	218
9	Reversal of TGF \hat{I}^2 1-Driven Profibrotic State in Patients with Pulmonary Fibrosis. New England Journal of Medicine, 2020, 382, 1068-1070.	27.0	42
10	Distinct Airway Epithelial Stem Cells Hide among Club Cells but Mobilize to Promote Alveolar Regeneration. Cell Stem Cell, 2020, 26, 346-358.e4.	11.1	151
11	VEGF Drives the Car toward Better Gas Exchange. Developmental Cell, 2020, 52, 546-547.	7.0	O
12	Small molecule inhibition of IRE1 \hat{i} t kinase/RNase has anti-fibrotic effects in the lung. PLoS ONE, 2019, 14, e0209824.	2.5	51
13	Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight, 2019, 4, .	5.0	69
14	Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. Journal of Clinical Investigation, 2019, 129, 2107-2122.	8.2	178
15	Idiopathic Pulmonary Fibrosis: Cell Death and Inflammation Revisited. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 137-138.	2.9	10
16	Extracellular matrix in lung development, homeostasis and disease. Matrix Biology, 2018, 73, 77-104.	3 . 6	200
17	TGF- \hat{l}^21 Signaling and Tissue Fibrosis. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022293.	5.5	432
18	Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype. Journal of Clinical Investigation, 2018, 128, 4343-4358.	8.2	64

#	Article	IF	Citations
19	Failure of Alveolar Type 2 Cell Maintenance Links Neonatal Distress with Adult Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 415-416.	2.9	2
20	Hypoxia-Inducible Factor 1α Signaling Promotes Repair of the Alveolar Epithelium after Acute Lung Injury. American Journal of Pathology, 2017, 187, 1772-1786.	3.8	86
21	Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nature Cell Biology, 2017, 19, 904-914.	10.3	202
22	Fibroblast-specific inhibition of TGF- \hat{l}^21 signaling attenuates lung and tumor fibrosis. Journal of Clinical Investigation, 2017, 127, 3675-3688.	8.2	135
23	Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 2015, 517, 621-625.	27.8	562
24	Inhibition of Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis by Methacycline. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 51-60.	2.9	46
25	Soluble Urokinase-Type Plasminogen Activator Receptor in FSGS: Stirred but Not Shaken. Journal of the American Society of Nephrology: JASN, 2014, 25, 1611-1613.	6.1	7
26	Innate Antiviral Host Defense Attenuates TGF-β Function through IRF3-Mediated Suppression of Smad Signaling. Molecular Cell, 2014, 56, 723-737.	9.7	64
27	Urokinase-type Plasminogen Activator Receptor (uPAR) Ligation Induces a Raft-localized Integrin Signaling Switch That Mediates the Hypermotile Phenotype of Fibrotic Fibroblasts. Journal of Biological Chemistry, 2014, 289, 12791-12804.	3.4	32
28	Repair and Regeneration of the Respiratory System: Complexity, Plasticity, and Mechanisms of Lung Stem Cell Function. Cell Stem Cell, 2014, 15, 123-138.	11.1	748
29	Cell Therapy for Lung Diseases. Report from an NIH–NHLBI Workshop, November 13–14, 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 370-375.	5.6	29
30	Activated Alveolar Epithelial Cells Initiate Fibrosis through Secretion of Mesenchymal Proteins. American Journal of Pathology, 2013, 183, 1559-1570.	3.8	75
31	Regenerative activity of the lung after epithelial injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 922-930.	3.8	46
32	Axin Pathway Activity Regulates in Vivo pY654- \hat{l}^2 -catenin Accumulation and Pulmonary Fibrosis. Journal of Biological Chemistry, 2012, 287, 5164-5172.	3.4	83
33	Epithelial Responses to Lung Injury. Proceedings of the American Thoracic Society, 2012, 9, 89-95.	3.5	27
34	Epithelial-Mesenchymal Interactions in Pulmonary Fibrosis. Annual Review of Physiology, 2011, 73, 413-435.	13.1	337
35	Integrin $\hat{l}\pm6\hat{l}^24$ identifies an adult distal lung epithelial population with regenerative potential in mice. Journal of Clinical Investigation, 2011, 121, 2855-2862.	8.2	379
36	Cell Plasticity in Lung Injury and Repair: Report from an NHLBI Workshop, April 19-20, 2010. Proceedings of the American Thoracic Society, 2011, 8, 215-222.	3.5	36

#	Article	IF	Citations
37	Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L71-L78.	2.9	135
38	Integrin α3β1–dependent β-catenin phosphorylation links epithelial Smad signaling to cell contacts. Journal of Cell Biology, 2009, 184, 309-322.	5.2	161
39	Epithelial cell $\hat{l}\pm3\hat{l}^21$ integrin links \hat{l}^2 -catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. Journal of Clinical Investigation, 2009, 119, 213-24.	8.2	342
40	Alveolar epithelial cell mesenchymal transition develops <i>in vivo</i> during pulmonary fibrosis and is regulated by the extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13180-13185.	7.1	1,118
41	Functional Relevance of Urinary-type Plasminogen Activator Receptor-α3β1 Integrin Association in Proteinase Regulatory Pathways. Journal of Biological Chemistry, 2006, 281, 13021-13029.	3.4	52
42	Endosomal proteases in antigen presentation. Current Opinion in Immunology, 2006, 18, 78-84.	5. 5	106
43	Cathepsin S is not crucial to TSHR processing and presentation in a murine model of Graves' disease. Immunology, 2005, 116, 051025020346010.	4.4	5
44	Cathepsin S Is Required for Murine Autoimmune Myasthenia Gravis Pathogenesis. Journal of Immunology, 2005, 174, 1729-1737.	0.8	56
45	The transforming growth factor-Â1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Human Molecular Genetics, 2004, 13, 1649-1656.	2.9	203
46	Cathepsins as Transcriptional Activators?. Developmental Cell, 2004, 6, 610-611.	7.0	16
47	Disorders of lung matrix remodeling. Journal of Clinical Investigation, 2004, 113, 148-157.	8.2	165
48	Regulation of CD1 Function and NK1.1+ T Cell Selection and Maturation by Cathepsin S. Immunity, 2001, 15, 909-919.	14.3	75
49	Cathepsins and compartmentalization in antigen presentation. Current Opinion in Immunology, 2000, 12, 107-113.	5.5	200
50	Role for Cathepsin F in Invariant Chain Processing and Major Histocompatibility Complex Class II Peptide Loading by Macrophages. Journal of Experimental Medicine, 2000, 191, 1177-1186.	8.5	216
51	Cross-Class Inhibition of the Cysteine Proteinases Cathepsins K, L, and S by the Serpin Squamous Cell Carcinoma Antigen 1:  A Kinetic Analysis. Biochemistry, 1998, 37, 5258-5266.	2.5	264
52	Essential Role for Cathepsin S in MHC Class Il–Associated Invariant Chain Processing and Peptide Loading. Immunity, 1996, 4, 357-366.	14.3	502
53	Role of Enzymes Mediating Thrombosis and Thrombolysis in Lung Disease. Chest, 1988, 93, 1256-1263.	0.8	65