
Mingxu You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4923236/publications.pdf Version: 2024-02-01

Μινοχή Υομ

#	Article	IF	CITATIONS
1	Programmable and Multiparameter DNA-Based Logic Platform For Cancer Recognition and Targeted Therapy. Journal of the American Chemical Society, 2015, 137, 667-674.	13.7	241
2	DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nature Nanotechnology, 2017, 12, 453-459.	31.5	226
3	DNA "Nano-Claw― Logic-Based Autonomous Cancer Targeting and Therapy. Journal of the American Chemical Society, 2014, 136, 1256-1259.	13.7	210
4	Genetically Encoded Catalytic Hairpin Assembly for Sensitive RNA Imaging in Live Cells. Journal of the American Chemical Society, 2018, 140, 8739-8745.	13.7	196
5	Imaging metabolite dynamics in living cells using a Spinach-based riboswitch. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2756-65.	7.1	170
6	Cell Membrane-Anchored Biosensors for Real-Time Monitoring of the Cellular Microenvironment. Journal of the American Chemical Society, 2014, 136, 13090-13093.	13.7	142
7	Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure. Nano Letters, 2015, 15, 6672-6676.	9.1	111
8	Structure and Mechanism of RNA Mimics of Green Fluorescent Protein. Annual Review of Biophysics, 2015, 44, 187-206.	10.0	108
9	A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nature Chemistry, 2015, 7, 835-841.	13.6	95
10	Building a Nanostructure with Reversible Motions Using Photonic Energy. ACS Nano, 2012, 6, 7935-7941.	14.6	69
11	Visualizing Intercellular Tensile Forces by DNA-Based Membrane Molecular Probes. Journal of the American Chemical Society, 2017, 139, 18182-18185.	13.7	68
12	<i>In Situ</i> Genetically Cascaded Amplification for Imaging RNA Subcellular Locations. Journal of the American Chemical Society, 2020, 142, 2968-2974.	13.7	54
13	A quantitative assessment of the dynamic modification of lipid–DNA probes on live cell membranes. Chemical Science, 2019, 10, 11030-11040.	7.4	46
14	Genetically Encoded Ratiometric RNAâ€Based Sensors for Quantitative Imaging of Small Molecules in Living Cells. Angewandte Chemie - International Edition, 2019, 58, 18271-18275.	13.8	40
15	Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator. Cell Chemical Biology, 2019, 26, 471-481.e3.	5.2	35
16	Nuclease-resistant synthetic drug-DNA adducts: programmable drug-DNA conjugation for targeted anticancer drug delivery. NPG Asia Materials, 2015, 7, e169-e169.	7.9	34
17	Quantifying tensile forces at cell–cell junctions with a DNA-based fluorescent probe. Chemical Science, 2020, 11, 8558-8566.	7.4	33
18	Genetically encoded RNA-based sensors for intracellular imaging of silver ions. Chemical Communications, 2019, 55, 707-710.	4.1	32

Mingxu You

#	Article	IF	CITATIONS
19	Intracellular Imaging with Genetically Encoded RNA-based Molecular Sensors. Nanomaterials, 2019, 9, 233.	4.1	32
20	"Second-generation―fluorogenic RNA-based sensors. Methods, 2019, 161, 24-34.	3.8	25
21	Current Methods for Detecting Cell Membrane Transient Interactions. Frontiers in Chemistry, 2020, 8, 603259.	3.6	25
22	Quantitative and Multiplexed Fluorescence Lifetime Imaging of Intercellular Tensile Forces. Angewandte Chemie - International Edition, 2021, 60, 15548-15555.	13.8	23
23	Liveâ€Cell Imaging of Guanosine Tetra―and Pentaphosphate (p)ppGpp with RNAâ€based Fluorescent Sensors**. Angewandte Chemie - International Edition, 2021, 60, 24070-24074.	13.8	23
24	Imaging Membrane Order and Dynamic Interactions in Living Cells with a DNA Zipper Probe. Angewandte Chemie - International Edition, 2022, 61, e202112033.	13.8	22
25	Aligner-mediated cleavage of nucleic acids and its application to isothermal exponential amplification. Chemical Science, 2018, 9, 3050-3055.	7.4	19
26	Pyrene-Assisted Efficient Photolysis of Disulfide Bonds in DNA-Based Molecular Engineering. ACS Applied Materials & Interfaces, 2010, 2, 3601-3605.	8.0	18
27	Lipid–oligonucleotide conjugates for simple and efficient cell membrane engineering and bioanalysis. Current Opinion in Biomedical Engineering, 2020, 13, 76-83.	3.4	18
28	Designing optogenetically controlled RNA for regulating biological systems. Annals of the New York Academy of Sciences, 2015, 1352, 13-19.	3.8	15
29	Lipid-DNA conjugates for cell membrane modification, analysis, and regulation. Supramolecular Chemistry, 2019, 31, 532-544.	1.2	13
30	Genetically encoded RNA nanodevices for cellular imaging and regulation. Nanoscale, 2021, 13, 7988-8003.	5.6	13
31	Ratiometric Fluorogenic RNA-Based Sensors for Imaging Live-Cell Dynamics of Small Molecules. ACS Applied Bio Materials, 2020, 3, 2633-2642.	4.6	12
32	Efficient and selective DNA modification on bacterial membranes. Chemical Science, 2021, 12, 2629-2634.	7.4	11
33	Paper-based fluorogenic RNA aptamer sensors for label-free detection of small molecules. Analytical Methods, 2020, 12, 2674-2681.	2.7	7
34	Recent developments in DNA-based mechanical nanodevices. Chemical Communications, 2022, 58, 4700-4710.	4.1	7
35	Genetically Encoded Ratiometric RNAâ€Based Sensors for Quantitative Imaging of Small Molecules in Living Cells. Angewandte Chemie, 2019, 131, 18439-18443.	2.0	4
36	Microfluidic DNA-based potassium nanosensors for improved dialysis treatment. BioMedical Engineering OnLine, 2019, 18, 73.	2.7	4

Mingxu You

#	Article	IF	CITATIONS
37	Quantitative and Multiplexed Fluorescence Lifetime Imaging of Intercellular Tensile Forces. Angewandte Chemie, 2021, 133, 15676-15683.	2.0	4
38	Imaging Membrane Order and Dynamic Interactions in Living Cells with a DNA Zipper Probe. Angewandte Chemie, 2022, 134, .	2.0	4
39	A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angewandte Chemie - International Edition, 2020, 59, 21986-21990.	13.8	2
40	Digging into the biophysical features of cell membranes with lipid-DNA conjugates. Quarterly Reviews of Biophysics, 2022, , 1-21.	5.7	2
41	A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angewandte Chemie, 2020, 132, 22170-22174.	2.0	0
42	Rational Design of Allosteric Fluorogenic RNA Sensors for Cellular Imaging. Methods in Molecular Biology, 2021, 2323, 141-152.	0.9	0
43	Liveâ€Cell Imaging of Guanosine Tetra―and Pentaphosphate (p)ppGpp with RNAâ€based Fluorescent Sensors. Angewandte Chemie, 2021, 133, 24272.	2.0	0
44	ROAD paved for the custom design of genetically encodable RNA nanodevices. Trends in Chemistry, 2021, 3, 691-693.	8.5	0
45	DNA Nanotechnology on Bio-Membranes. Membranes, 2022, 12, 491.	3.0	0