Hitoshi Takizawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4921935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice. Blood, 2022, 139, 44-58.	1.4	51
2	Impact of cerebrovascular comorbidity on prognosis in Japanese patients undergoing PCI: 1-year data from Japanese multicenter registry (KICS). Heart and Vessels, 2022, , 1.	1.2	2
3	Inflammation Regulates Haematopoietic Stem Cells and Their Niche. International Journal of Molecular Sciences, 2022, 23, 1125.	4.1	14
4	Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans. Blood, 2022, 139, 3387-3401.	1.4	26
5	Eliminating chronic myeloid leukemia stem cells by IRAK1/4 inhibitors. Nature Communications, 2022, 13, 271.	12.8	12
6	Autophagy is dispensable for the maintenance of hematopoietic stem cells in neonates. Blood Advances, 2021, 5, 1594-1604.	5.2	15
7	Fit-For-All iPSC-Derived Cell Therapies and Their Evaluation in Humanized Mice With NK Cell Immunity. Frontiers in Immunology, 2021, 12, 662360.	4.8	32
8	Remote control of neural function by X-ray-induced scintillation. Nature Communications, 2021, 12, 4478.	12.8	50
9	CD271+CD51+PALLADINâ^' Human Mesenchymal Stromal Cells Possess Enhanced Ossicle-Forming Potential. Stem Cells and Development, 2021, 30, 725-735.	2.1	0
10	iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports, 2020, 14, 49-59.	4.8	57
11	Immuno-Modulation of Hematopoietic Stem and Progenitor Cells in Inflammation. Frontiers in Immunology, 2020, 11, 585367.	4.8	16
12	Establishment of bone marrow-derived M-CSF receptor-dependent self-renewing macrophages. Cell Death Discovery, 2020, 6, 63.	4.7	18
13	Genetic fingerprint defines hematopoietic stem cell pool size and function. Haematologica, 2020, 105, 526-528.	3.5	1
14	Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia. Nature Communications, 2019, 10, 4869.	12.8	36
15	Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. IScience, 2019, 19, 504-513.	4.1	13
16	Hlf marks the developmental pathway for hematopoietic stem cells but not for erythro-myeloid progenitors. Journal of Experimental Medicine, 2019, 216, 1599-1614.	8.5	53
17	Development of the hematopoietic system: Role of inflammatory factors. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e341.	5.9	11
18	Discrimination of Dormant and Active Hematopoietic Stem Cells by G0 Marker Reveals Dormancy Regulation by Cytoplasmic Calcium. Cell Reports, 2019, 29, 4144-4158.e7.	6.4	27

ΗΙΤΟSHI TAKIZAWA

#	Article	lF	CITATIONS
19	Inflammageing of Hematopoietic Stem Cells Is Driven By IL-1. Blood, 2019, 134, 819-819.	1.4	0
20	Engineered humanized bone organs maintain human hematopoiesis in vivo. Experimental Hematology, 2018, 61, 45-51.e5.	0.4	17
21	Thrombopoietin Metabolically Primes Hematopoietic Stem Cells to Megakaryocyte-Lineage Differentiation. Cell Reports, 2018, 25, 1772-1785.e6.	6.4	62
22	Impact of inflammation on early hematopoiesis and the microenvironment. International Journal of Hematology, 2017, 106, 27-33.	1.6	35
23	Pathogen-Induced TLR4-TRIF Innate Immune Signaling in Hematopoietic Stem Cells Promotes Proliferation but Reduces Competitive Fitness. Cell Stem Cell, 2017, 21, 225-240.e5.	11.1	210
24	Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment. Frontiers in Immunology, 2016, 7, 502.	4.8	272
25	Enhanced thrombopoietin but not G-CSF receptor stimulation induces self-renewing hematopoietic stem cell divisions in vivo. Blood, 2016, 127, 3175-3179.	1.4	44
26	MPL expression on AML blasts predicts peripheral blood neutropenia and thrombocytopenia. Blood, 2016, 128, 2253-2257.	1.4	34
27	LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance. Annals of Hematology, 2016, 95, 173-178.	1.8	33
28	Mpl Expression on AML Blasts Predicts Cytopenia. Blood, 2015, 126, 1387-1387.	1.4	0
29	The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development (Cambridge), 2014, 141, 4656-4666.	2.5	169
30	Fas (<scp>CD</scp> 95) expression in myeloid cells promotes obesityâ€induced muscle insulin resistance. EMBO Molecular Medicine, 2014, 6, 43-56.	6.9	34
31	<i>BRAF-V600E</i> expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. Journal of Experimental Medicine, 2014, 211, 669-683.	8.5	346
32	Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing <i>JAK2</i> -V617F. Journal of Experimental Medicine, 2014, 211, 2213-2230.	8.5	88
33	A comprehensive surface proteome analysis of myeloid leukemia cell lines for therapeutic antibody development. Journal of Proteomics, 2014, 99, 138-151.	2.4	24
34	Mouse Genetic Background and Human Hematopoietic Stem Cells Biology; Tips for Humanization. , 2014, , 33-51.		0
35	Direct Sensing of Lipopolysaccharide Limits Hematopoietic Stem Cell Selfrenewal Via TLR4-TRIF-ROS-p38 Pathway. Blood, 2014, 124, 604-604.	1.4	0
36	Human Hemato-Lymphoid System Mice: Current Use and Future Potential for Medicine. Annual Review of Immunology, 2013, 31, 635-674.	21.8	304

ΗΙΤΟSHI TAKIZAWA

#	Article	IF	CITATIONS
37	Engineering of a functional bone organ through endochondral ossification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3997-4002.	7.1	289
38	Hematopoietic Stem Cells and Circulating Myelomonocytic Precursors With BRAF-V600E Are Identified In High-Risk Patients and Define LCH As a Myeloid Neoplasia. Blood, 2013, 122, 103-103.	1.4	0
39	<i>In vivo</i> divisional tracking of hematopoietic stem cells. Annals of the New York Academy of Sciences, 2012, 1266, 40-46.	3.8	5
40	Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood, 2012, 119, 2991-3002.	1.4	351
41	Cutting Edge: LPS-Induced Emergency Myelopoiesis Depends on TLR4-Expressing Nonhematopoietic Cells. Journal of Immunology, 2012, 188, 5824-5828.	0.8	129
42	Thrombopoietin-Receptor Signalling Induces Proliferation of Dormant HSC Blood, 2012, 120, 2343-2343.	1.4	0
43	Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2390-2395.	7.1	202
44	Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proceedings of the United States of America, 2011, 108, 2378-2383.	7.1	169
45	Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes. Blood, 2011, 118, 4829-4840.	1.4	62
46	Dynamic regulation of hematopoietic stem cell cycling. Cell Cycle, 2011, 10, 2246-2247.	2.6	1
47	Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. Journal of Experimental Medicine, 2011, 208, 273-284.	8.5	271
48	Transgenic expression of human signal regulatory protein alpha in Rag2 ^{â^'/â^'} γ _c ^{â^'/â^'} mice improves engraftment of human hematopoietic cells in humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13218-13223.	7.1	205
49	JAK2-V617F Expressing Stem Cells Display a Competitive Advantage At Low Limiting Dilution and Are Capable of Initiating MPN Phenotype. Blood, 2011, 118, 615-615.	1.4	1
50	Ex vivo expansion of hematopoietic stem cells: mission accomplished?. Swiss Medical Weekly, 2011, 141, w13316.	1.6	20
51	Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. Journal of Cell Biology, 2011, 192, i3-i3.	5.2	0
52	Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. Journal of Clinical Investigation, 2010, 120, 179-190.	8.2	84
53	Non-Hematopoietic Stromal Cells Sense Toll-Like Receptor 4 Agonists and Consequently Enhance Myelopoiesis Blood, 2010, 116, 2583-2583.	1.4	0
54	Humanized Mice for Modeling Human Infectious Disease: Challenges, Progress, and Outlook. Cell Host and Microbe, 2009, 6, 5-9.	11.0	202

#	Article	IF	CITATIONS
55	Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Experimental Hematology, 2008, 36, 897-906.	0.4	40
56	Macrophage tolerance: CD47–SIRP-α–mediated signals matter. Nature Immunology, 2007, 8, 1287-1289.	14.5	56
57	Transient blocking of Lnk-mediated pathways as a potential approach to promote engrafting ability of hematopoietic progenitor cells. Inflammation and Regeneration, 2007, 27, 59-64.	3.7	0
58	Enhanced engraftment of hematopoietic stem/progenitor cells by the transient inhibition of an adaptor protein, Lnk. Blood, 2006, 107, 2968-2975.	1.4	41
59	Negative Hematopoietic Scaffold Lnk Upregulates Integrin Outside-In Signaling in Platelets Blood, 2005, 106, 382-382.	1.4	0
60	Roles of a conserved family of adaptor proteins, Lnk, SH2-B, and APS, for mast cell development, growth, and functions: APS-deficiency causes augmented degranulation and reduced actin assembly. Biochemical and Biophysical Research Communications, 2004, 315, 356-362.	2.1	28