Ratbay Myrzakulov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4920751/publications.pdf

Version: 2024-02-01

281 papers

8,734 citations

³⁸⁷⁴² 50 h-index

79 g-index

282 all docs 282 docs citations

times ranked

282

1768 citing authors

#	Article	IF	CITATIONS
1	Reconstruction of some cosmological models in $f(R,T)$ cosmology. European Physical Journal C, 2012, 72, 1.	3.9	304
2	Accelerating universe from F(T) gravity. European Physical Journal C, 2011, 71, 1.	3.9	295
3	Reconstruction of rmml:mml:mww.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	T ₫. (/stretc	h y≤' ≸alse">)∘
4	thermodynamics. Physical Review D, 2012, 85, . Teleparallel equivalent of Gauss-Bonnet gravity and its modifications. Physical Review D, 2014, 90, .	4.7	208
5	Ĵ→CDM epoch reconstruction from <i>F</i> (<i>R</i> , <i>G</i>) and modified Gauss–Bonnet gravities. Classical and Quantum Gravity, 2010, 27, 095007.	4.0	194
6	Mimetic Gravity: A Review of Recent Developments and Applications to Cosmology and Astrophysics. Advances in High Energy Physics, 2017, 2017, 1-43.	1.1	190
7	FRW cosmology in F(R,T) gravity. European Physical Journal C, 2012, 72, 1.	3.9	146
8	Inflation in \$\$f(R,phi)\$\$ f (R , $\ddot{\textbf{i}}$) -theories and mimetic gravity scenario. European Physical Journal C, 2015, 75, 1.	3.9	140
9	Holographic dark energy through Tsallis entropy. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 012-012.	5.4	134
10	Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 022-022.	5.4	132
11	Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes. Classical and Quantum Gravity, 2016, 33, 125005.	4.0	131
12	Nearly Starobinsky inflation from modified gravity. Physical Review D, 2014, 89, .	4.7	125
13	On the ÎCDM Universe in f(G) gravity. General Relativity and Gravitation, 2011, 43, 1671-1684.	2.0	115
14	Wormholes in a viable f(T) gravity. European Physical Journal C, 2013, 73, 1.	3.9	114
15	Attractor solutions in f(T) cosmology. European Physical Journal C, 2012, 72, 1.	3.9	113
16	Violation of the First Law of Thermodynamics in $\langle i \rangle f \langle i \rangle (\langle i \rangle R \langle i \rangle, \langle i \rangle T \langle i \rangle)$ Gravity. Chinese Physics Letters, 2012, 29, 109801.	3.3	111
17	Analysis of F(R, T) gravity models through energy conditions. European Physical Journal Plus, 2013, 128, 1.	2.6	106
	Cosmological applications of mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/MI"		

Cosmological applications of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>T</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mrow><mml:mi>T</mml:mrow><mml:mrow><mml:mrow><mml:mi>T</mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m

#	Article	IF	CITATIONS
19	Anisotropic compact stars in f(G) gravity. Astrophysics and Space Science, 2015, 357, 1.	1.4	94
20	Cosmological viable mimetic $f(R)$ and $f(R,T)$ theories via Noether symmetry. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550101.	2.0	92
21	Einstein gravity with Gauss-Bonnet entropic corrections. Physical Review D, 2013, 88, .	4.7	89
22	Generalized second law of thermodynamics in $f(T)$ gravity with entropy corrections. Astrophysics and Space Science, 2013, 344, 259-267.	1.4	89
23	Stability of a non-minimally conformally coupled scalar field in F(T) cosmology. European Physical Journal C, 2012, 72, 1.	3.9	85
24	Covariant HorìŒava-like and mimetic Horndeski gravity: cosmological solutions and perturbations. Classical and Quantum Gravity, 2016, 33, 225014.	4.0	85
25	A type of Levi–Civita solution in modified Gauss–Bonnet gravity. Canadian Journal of Physics, 2014, 92, 173-176.	1.1	83
26	Noether symmetry of $F(T)$ cosmology with quintessence and phantom scalar fields. European Physical Journal C, 2012, 72, 1.	3.9	81
27	F(R)-gravity and inflation. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1530003.	2.0	81
28	Unification of inflation and dark energyà laquintessential inflation. International Journal of Modern Physics D, 2015, 24, 1530014.	2.1	81
29	SOME ASPECTS OF GENERALIZED MODIFIED GRAVITY MODELS. International Journal of Modern Physics D, 2013, 22, 1330017.	2.1	80
30	Variable gravity: A suitable framework for quintessential inflation. Physical Review D, 2014, 90, .	4.7	77
31	Motion of curves and surfaces and nonlinear evolution equations in (2+1) dimensions. Journal of Mathematical Physics, 1998, 39, 3765-3771.	1.1	71
32	Cosmic history of viable exponential gravity: equation of state oscillations and growth index from inflation to dark energy era. Classical and Quantum Gravity, 2013, 30, 015008.	4.0	70
33	p-wave holographic superconductors with Weyl corrections. Europhysics Letters, 2012, 97, 61001.	2.0	69
34	Trace-anomaly driven inflation in modified gravity and the BICEP2 result. Physical Review D, 2014, 90, .	4.7	66
35	Bianchi type I cosmology in generalized Saez–Ballester theory via Noether gauge symmetry. European Physical Journal C, 2012, 72, 1.	3.9	65
36	Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results. Physical Review D, 2015, 92, .	4.7	65

3

#	Article	IF	Citations
37	Exploring cylindrical solutions in modified $\langle i \rangle f \langle i \rangle G \langle i \rangle$ gravity. Canadian Journal of Physics, 2014, 92, 1528-1540.	1.1	64
38	On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear SchrĶdinger equations. Journal of Mathematical Physics, 1998, 39, 2122-2140.	1.1	61
39	Resolution of dark matter problem in f(T) gravity. European Physical Journal C, 2012, 72, 1.	3.9	60
40	FRW and Bianchi type I cosmology of f-essence. Astrophysics and Space Science, 2012, 339, 37-43.	1.4	60
41	Class of quintessential inflation models with parameter space consistent with BICEP2. Physical Review D, 2014, 89, .	4.7	60
42	Nonommutative wormholes in f(R) gravity. Journal of the Korean Physical Society, 2014, 65, 917-925.	0.7	59
43	Higher order corrections of the extended Chaplygin gas cosmology with varying SG and S . European Physical Journal C, 2015, 75, 1.	3.9	59
44	Pure Kinetic K-essence as the Cosmic Speed-Up. International Journal of Theoretical Physics, 2011, 50, 1876-1886.	1.2	58
45	A (2 + 1)-dimensional integrable spin model: Geometrical and gauge equivalent counterpart, solitons and localized coherent structures. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 233, 391-396.	2.1	56
46	Energy conditions in generalized teleparallel gravity models. General Relativity and Gravitation, 2013, 45, 263-273.	2.0	55
47	Inflationary universe from higher-derivative quantum gravity. Physical Review D, 2015, 91, .	4.7	54
48	\$\$F(T)\$\$ gravity and k-essence. General Relativity and Gravitation, 2012, 44, 3059-3080.	2.0	53
49	Integrable (2 + 1)-Dimensional Spin Models with Self-Consistent Potentials. Symmetry, 2015, 7, 1352-1375.	2.2	52
50	Pilgrim dark energy in f(T,T G) cosmology. Astrophysics and Space Science, 2014, 353, 279-292.	1.4	50
51	Holographic complexity in gauge/string superconductors. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 756, 354-357.	4.1	50
52	Phase space analysis of interacting dark energy in f(T) cosmology. Open Physics, 2012, 10, .	1.7	48
53	Charged black holes in generalized teleparallel gravity. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 024-024.	5.4	48
54	Cosmological fluids with logarithmic equation of state. Annals of Physics, 2018, 398, 238-253.	2.8	48

#	Article	IF	CITATIONS
55	Integrable generalizations of SchrĶdinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces. Journal of Geometry and Physics, 2010, 60, 1576-1603.	1.4	47
56	New modified mimetic gravity. International Journal of Geometric Methods in Modern Physics, 2014, 11, 1450091.	2.0	47
57	Dynamics of interacting quintessence. European Physical Journal C, 2015, 75, 1.	3.9	47
58	Constraints on cosmological parameters in power-law cosmology. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 031-031.	5.4	47
59	Generalized second law of thermodynamics in f (R , T) $f(R,T)$ theory of gravity. Astrophysics and Space Science, 2016, 361, 1.	1.4	47
60	Turbulence and little rip cosmology. Physical Review D, 2012, 86, .	4.7	46
61	Bounce solutions in viscous fluid cosmology. Astrophysics and Space Science, 2014, 352, 281-288.	1.4	46
62	CYLINDRICAL SOLUTIONS IN MODIFIED f(T) GRAVITY. International Journal of Modern Physics D, 2012, 21, 1250093.	2.1	45
63	CONDENSATION OF THE SCALAR FIELD WITH STUCKELBERG AND WEYL CORRECTIONS IN THE BACKGROUND OF A PLANAR AdS–SCHWARZSCHILD BLACK HOLE. International Journal of Modern Physics A, 2012, 27, 1250128.	1.5	44
64	Reconstruction of cosmic history from a simple parametrization of H. International Journal of Geometric Methods in Modern Physics, 2017, 14, 1750111.	2.0	43
65	Statefinder Analysis of <i>f </i> (<i> T </i>) Cosmology. Journal of the Physical Society of Japan, 2012, 81, 114004.	1.6	42
66	Instabilities and (anti)-evaporation of Schwarzschild–de Sitter black holes in modified gravity. Physical Review D, 2013, 88, .	4.7	42
67	Gauge equivalence between -dimensional continuous Heisenberg ferromagnetic models and nonlinear SchrĶdinger-type equations. Journal of Physics A, 1998, 31, 9535-9545.	1.6	41
68	Interacting Ricci dark energy with logarithmic correction. Astrophysics and Space Science, 2012, 340, 199-208.	1.4	41
69	Statefinder hierarchy of bimetric and galileon models for concordance cosmology. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 047-047.	5.4	40
70	Spherically symmetric static vacuum solutions in Mimetic gravity. General Relativity and Gravitation, 2015, 47, 1.	2.0	40
71	Tolman–Oppenheimer–Volkoff equations in nonlocal f(R) gravity. International Journal of Modern Physics A, 2015, 30, 1550093.	1.5	39
72	Spectrum of Primordial Gravitational Waves in Modified Gravities: A Short Overview. Symmetry, 2022, 14, 729.	2.2	39

#	Article	IF	CITATIONS
73	Non-singular solutions to Einstein-Klein-Gordon equations with a phantom scalar field. Journal of High Energy Physics, 2008, 2008, 094-094.	4.7	38
74	Warm Intermediate Inflation in $F(T)$ Gravity. International Journal of Theoretical Physics, 2015, 54, 1098-1112.	1.2	37
75	Late-time cosmic acceleration: ABCD of dark energy and modified theories of gravity. International Journal of Modern Physics D, 2016, 25, 1630031.	2.1	37
76	Fidelity susceptibility as holographic PV-criticality. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 765, 154-158.	4.1	37
77	Phase space analysis of some interacting Chaplygin gas models. European Physical Journal C, 2017, 77, 1.	3.9	37
78	Cosmology of F(T) Gravity and k-Essence. Entropy, 2012, 14, 1627-1651.	2.2	36
79	Reconstruction of $f(T)$ and $f(R)$ gravity according to (m, n) -type holographic dark energy. Canadian Journal of Physics, 2013, 91, 703-708.	1.1	36
80	Geometrothermodynamics of higher dimensional black holes. General Relativity and Gravitation, 2013, 45, 1603-1617.	2.0	36
81	Cosmological investigations of (extended) nonlinear massive gravity schemes with nonminimal coupling. Physical Review D, 2014, 89, .	4.7	36
82	Power-law entropy-corrected Ricci dark energy and dynamics of scalar fields. Physica Scripta, 2012, 86, 045004.	2.5	35
83	Bulk viscous embedded hybrid dark energy models. European Physical Journal C, 2019, 79, 1.	3.9	35
84	Noether symmetries in a modified scalar-tensor gravity. Physical Review D, 2014, 90, .	4.7	34
85	Cosmological reconstruction of f(T, ?) gravity. International Journal of Geometric Methods in Modern Physics, 2014, 11, 1450077.	2.0	34
86	Analysis of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub>H<mml:mn>0</mml:mn></mml:msub></mml:math> tension problem in the Universe with viscous dark fluid. Physical Review D, 2020, 102, .	4.7	34
87	Generalized second law of thermodynamics for FRW cosmology with power-law entropy correction. European Physical Journal C, 2012, 72, 1.	3.9	33
88	Modified Chaplygin gas and solvable F-essence cosmologies. Astrophysics and Space Science, 2011, 336, 315-325.	1.4	32
89	Thermodynamics in Little Rip cosmology in the framework of a type of f(R, T) gravity. European Physical Journal Plus, 2014, 129, 1.	2.6	32
90	Tolman–Oppenheimer–Volkoff equations in modified Gauss–Bonnet gravity. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550014.	2.0	31

#	Article	IF	CITATIONS
91	Charged noncommutative wormhole solutions in f(T) gravity. European Physical Journal Plus, 2014, 129, 1.	2.6	29
92	Evading Lyth bound in models of quintessential inflation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 737, 191-195.	4.1	29
93	Holographic, new agegraphic, and ghost dark energy models in fractal cosmology. Canadian Journal of Physics, 2013, 91, 770-776.	1.1	28
94	Dynamics of coupled phantom and tachyon fields. European Physical Journal C, 2017, 77, 1.	3.9	28
95	Observational constraints on non-minimally coupled Galileon model. European Physical Journal C, 2013, 73, 1.	3.9	27
96	Reconstruction of inflation models. European Physical Journal C, 2015, 75, 1.	3.9	27
97	Quintessential inflation in a thawing realization. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 770, 200-208.	4.1	27
98	Inhomogeneous viscous fluids in FRW universe and finite-future time singularities. Astrophysics and Space Science, 2014, 350, 845-853.	1.4	26
99	Holographic entanglement entropy in 2D holographic superconductor via AdS3/CFT2. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 747, 417-425.	4.1	26
100	Relic gravitational waves from quintessential inflation. Physical Review D, 2017, 96, .	4.7	26
101	Deformation of surfaces, integrable systems, and Chern–Simons theory. Journal of Mathematical Physics, 2001, 42, 1397.	1.1	25
102	Noether symmetry approach for teleparallel-curvature cosmology. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550095.	2.0	25
103	Beyond-one-loop quantum gravity action yielding both inflation and late-time acceleration. Nuclear Physics B, 2017, 921, 411-435.	2.5	25
104	Interacting Quintessence Dark Energy Models in Lyra Manifold. Advances in High Energy Physics, 2014, 2014, 1-13.	1.1	24
105	Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2118-2123.	2.1	24
106	Interacting varying ghost dark energy models in general relativity. Astrophysics and Space Science, 2015, 357, 1.	1.4	24
107	Observational constraints on varying neutrino-mass cosmology. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 049-049.	5.4	24
108	Nonlinear spin-phonon excitations in an inhomogeneous compressible biquadratic Heisenberg spin chain. Physica A: Statistical Mechanics and Its Applications, 1997, 234, 715-724.	2.6	23

#	Article	IF	Citations
109	Thick brane in 7D and 8D spacetimes. General Relativity and Gravitation, 2009, 41, 131-146.	2.0	23
110	Higher-derivative f(R, \hat{a}_{i} R,T) theories of gravity. International Journal of Modern Physics D, 2017, 26, 1750024.	2.1	23
111	Noether gauge symmetry of modified teleparallel gravity minimally coupled with a canonical scalar field. Canadian Journal of Physics, 2013, 91, 93-97.	1.1	22
112	PLANAR SYMMETRY IN f(T) GRAVITY. International Journal of Modern Physics D, 2013, 22, 1350043.	2.1	22
113	Non-local F (R) \$F(R)\$ -mimetic gravity. Astrophysics and Space Science, 2016, 361, 1.	1.4	22
114	Unifying an asymmetric bounce to the dark energy in Chern–Simons F(R) gravity. Physics of the Dark Universe, 2021, 33, 100864.	4.9	22
115	Non-minimal geometry–matter couplings in Weyl–Cartan space–times: <mml:math altimg="si4.svg" display="inline" id="d1e1253" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><igravity. 100886.<="" 2021,="" 34,="" dark="" of="" physics="" td="" the="" universe,=""><td>n#il:mo>,</td><td></td></igravity.></mml:mrow></mml:mrow></mml:math>	n#il:mo>,	
116	Analytical Holographic Superconductor with Backreaction Using AdS 3/CFT 2. International Journal of Theoretical Physics, 2013, 52, 2773-2783.	1.2	21
117	Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics. Nuclear Physics B, 2016, 907, 646-663.	2.5	21
118	Particle-Like Excitations in Many Component Magnon-Phonon Systems. Physica Scripta, 1986, 33, 378-384.	2.5	19
119	Noether gauge symmetry for the Bianchi type I model in <i>f</i> (<i>T</i>) gravity. Physica Scripta, 2013, 88, 025003.	2.5	19
120	Integrable Kuralay Equations: Geometry, Solutions and Generalizations. Symmetry, 2022, 14, 1374.	2.2	19
121	Inhomogeneous viscous fluids for inflation. Astrophysics and Space Science, 2015, 356, 205-213.	1.4	18
122	Cylindrical solutions in mimetic gravity. European Physical Journal C, 2016, 76, 1.	3.9	18
123	Darboux transformation and exact solutions of the integrable Heisenberg ferromagnetic equation with self-consistent potentials. International Journal of Geometric Methods in Modern Physics, 2016, 13, 1550134.	2.0	18
124	THERMODYNAMICS OF A SCHWARZSCHILD BLACK HOLE IN PHANTOM COSMOLOGY WITH ENTROPY CORRECTIONS. International Journal of Modern Physics D, 2012, 21, 1250065.	2.1	17
125	Geometrothermodynamics of Myers-Perry Black Holes. Advances in High Energy Physics, 2013, 2013, 1-11.	1.1	17
126	HOLOGRAPHIC SUPERCONDUCTORS WITH WEYL CORRECTIONS VIA GAUGE/GRAVITY DUALITY. International Journal of Modern Physics A, 2013, 28, 1350096.	1.5	17

#	Article	IF	Citations
127	Torsion and Particle Horizons. International Journal of Theoretical Physics, 2014, 53, 3901-3909.	1.2	17
128	An effective quintessence field with a power-law potential. Astrophysics and Space Science, 2015, 356, 383-391.	1.4	17
129	Holographic superconductors with Weyl corrections. International Journal of Geometric Methods in Modern Physics, 2016, 13, 1550131.	2.0	16
130	Power-law entropy-corrected holographic dark energy in HoÅ $^{\rm M}$ ava-Lifshitz cosmology with Granda-Oliveros cut-off. European Physical Journal Plus, 2016, 131, 1.	2.6	16
131	Mimetic Attractors. International Journal of Theoretical Physics, 2016, 55, 2558-2572.	1.2	16
132	Kaluza–Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 365-374.	1.5	16
133	General Slow-Roll Inflation in f(R) Gravity under the Palatini Approach. Symmetry, 2020, 12, 1958.	2.2	16
134	Cosmological bouncing scenarios in symmetric teleparallel gravity. European Physical Journal Plus, $2021, 136, 1.$	2.6	16
135	Generalized Coherent States and the Continuous Heisenberg XYZ Model With One-Ion Anisotropy. Physica Scripta, 1987, 35, 233-237.	2.5	15
136	Geometry and multidimensional soliton equations. Theoretical and Mathematical Physics(Russian) Tj ETQq0 0 0	rgBT/Over	lock 10 Tf 50
137	Linear stability of spherically symmetric and wormhole solutions supported by the sine-Gordon ghost scalar field. Physical Review D, 2010, 82, .	4.7	15
138	Periodic Cosmological Evolutions of Equation of State for Dark Energy. Entropy, 2012, 14, 2351-2374.	2.2	15
139	Noether gauge symmetry approach in quintom cosmology. Astrophysics and Space Science, 2013, 348, 533-540.	1.4	15
140	Topological static spherically symmetric vacuum solutions in gravity $\mbox{smathcal}\{F\}(R,G)$. General Relativity and Gravitation, 2013, 45, 675-690.	2.0	15
141	Inhomogeneous Viscous Fluids in a Friedmann-Robertson-Walker (FRW) Universe. Galaxies, 2013, 1, 83-95.	3.0	15
142	Conformal invariant teleparallel cosmology. European Physical Journal Plus, 2014, 129, 1.	2.6	15
143	(2+1)-Dimensional Solutions in F(R) Gravity. International Journal of Theoretical Physics, 2014, 53, 4170-4181.	1.2	15
144	Chaotic inflation in higher derivative gravity theories. European Physical Journal C, 2015, 75, 1.	3.9	15

#	Article	IF	CITATIONS
145	Scalar tensor Horndeski models: simple cosmological applications. Astrophysics and Space Science, 2016, 361, 1.	1.4	15
146	Imperfect fluid cosmological model in modified gravity. Chinese Journal of Physics, 2017, 55, 1044-1054.	3.9	15
147	Cosmic string in gravity's rainbow. Astrophysics and Space Science, 2017, 362, 1.	1.4	15
148	G-essence with Yukawa interactions. European Physical Journal C, 2011, 71, 1.	3.9	14
149	Looking for empty topological wormhole spacetimes in $\langle i \rangle F \langle i \rangle$ ($\langle i \rangle R \langle i \rangle$)-modified gravity. Classical and Quantum Gravity, 2013, 30, 235013.	4.0	14
150	Inhomogeneous universe in f(T) theory. Gravitation and Cosmology, 2014, 20, 80-89.	1.1	14
151	f(i•)R-models for inflation. International Journal of Modern Physics D, 2016, 25, 1650041.	2.1	14
152	Mimetic compact stars. International Journal of Geometric Methods in Modern Physics, 2018, 15, 1850091.	2.0	14
153	Bounce and cyclic cosmology in new gravitational scalar-tensor theories. Physical Review D, 2018, 98,	4.7	14
154	Cosmological Einstein–Maxwell model with g-essence. International Journal of Modern Physics D, 2019, 28, 1950126.	2.1	14
155	DARK ENERGY IN SOME INTEGRABLE AND NONINTEGRABLE FRW COSMOLOGICAL MODELS. International Journal of Modern Physics D, 2011, 20, 2419-2446.	2.1	13
156	Ekpyrotic universes inF(R)Hořava-Lifshitz gravity. Physical Review D, 2012, 85, .	4.7	13
157	Construction of a holographic superconductor in F(R) gravity. European Physical Journal Plus, 2014, 129, 1.	2.6	13
158	Dromions in (<mml:math)="" 0="" altimg="si14.gif" etqq0="" r<br="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML">dimensional ferromagnetic spin chain with bilinear and biquadratic interactions. Physica A: Statistical</mml:math>	gBT /Over 2.6	lock 10 Tf 50 13
159	Mechanics and Its Applications, 2014, 415, 105-115. Analytical holographic superconductors in AdS _N -Lifshitz topological black holes. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550015.	2.0	13
160	Analytical coexistence of s-, p-, (s + p)-phases of a holographic superconductor. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550048.	2.0	13
161	Noether symmetry approach for Dirac–Born–Infeld cosmology. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550065.	2.0	13
162	Statefinder Parameters for Different Dark Energy Models with Variable G Correction in Kaluza-Klein Cosmology. International Journal of Theoretical Physics, 2012, 51, 2246-2255.	1.2	12

#	Article	IF	CITATIONS
163	COSMOLOGICAL EVOLUTION OF EQUATION OF STATE FOR DARK ENERGY IN G-ESSENCE MODELS. International Journal of Modern Physics D, 2013, 22, 1350023.	2.1	12
164	Evolution of Primordial Black Holes in Loop Quantum Cosmology. Journal of Astrophysics and Astronomy, 2014, 35, 97-106.	1.0	12
165	Interaction between modified Chaplygin gas and ghost dark energy in the presence of extra dimensions. European Physical Journal Plus, 2014, 129, 1.	2.6	12
166	Evaporation phenomena in f(T) gravity. Canadian Journal of Physics, 2015, 93, 377-383.	1.1	12
167	Interacting Ricci Dark Energy Models with an Effective Î-term in Lyra Manifold. International Journal of Theoretical Physics, 2015, 54, 749-760.	1.2	12
168	Galileons, phantom fields, and the fate of the Universe. European Physical Journal C, 2016, 76, 1.	3.9	12
169	Observational constraints on the generalized \hat{l}_\pm attractor model. International Journal of Modern Physics D, 2018, 27, 1850058.	2.1	12
170	Modelling of a compact anisotropic star as an anisotropic fluid sphere in <i>f</i> (<i>T</i>) gravity. Canadian Journal of Physics, 2018, 96, 1295-1303.	1.1	12
171	Metric-Affine Version of Myrzakulov F(R,T,Q,T) Gravity and Cosmological Applications. Universe, 2021, 7, 262.	2.5	12
172	Trace-anomaly driven inflation in $f(T)$ gravity with a cosmological constant. Astrophysics and Space Science, 2015, 357, 1.	1.4	11
173	Cosmological reconstruction and <i>Om </i> diagnostic analysis of Einstein-Aether theory. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 015-015.	5.4	11
174	Reconstruction of k-essence inflation in Horndeski gravity. European Physical Journal Plus, 2017, 132, 1.	2.6	11
175	Coupled dispersionless and generalized Heisenberg ferromagnet equations with self-consistent sources: Geometry and equivalence. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050104.	2.0	11
176	BOSON STARS FROM A GAUGE CONDENSATE. Modern Physics Letters A, 2007, 22, 273-281.	1.2	10
177	PHANTOM FIELDS: BOUNCE SOLUTIONS IN THE EARLY UNIVERSE AND S-BRANES. International Journal of Modern Physics D, 2008, 17, 2351-2358.	2.1	10
178	Inhomogeneous fluids for warm inflation. Astrophysics and Space Science, 2015, 357, 1.	1.4	10
179	Light mass Galileon and late time acceleration of the Universe. General Relativity and Gravitation, 2015, 47, 1.	2.0	10
180	Integrable geometric flows of interacting curves/surfaces, multilayer spin systems and the vector nonlinear SchrĶdinger equation. International Journal of Geometric Methods in Modern Physics, 2017, 14, 1750136.	2.0	10

#	Article	IF	Citations
181	Cosmic acceleration from coupling of baryonic and dark matter components: Analysis and diagnostics. International Journal of Modern Physics D, 2019, 28, 1950083.	2.1	10
182	More on Superconductors via Gauge/Gravity Duality with Nonlinear Maxwell Field. Journal of Gravity, 2013, 2013, 1-10.	0.4	10
183	G-essence cosmologies with scalar-fermion interactions. European Physical Journal Plus, 2011, 126, 1.	2.6	9
184	Knot Universes in Bianchi Type I Cosmology. Advances in High Energy Physics, 2012, 2012, 1-57.	1.1	9
185	g-Essence as the cosmic speed-up. Astrophysics and Space Science, 2012, 341, 681-688.	1.4	9
186	Solvable k-essence cosmologies and modified Chaplygin gas unified models of dark energy and dark matter. European Physical Journal C, 2012, 72, 1.	3.9	9
187	Fluid inflation with brane correction. Astrophysics and Space Science, 2015, 357, 1.	1.4	9
188	Compact stars in vector–tensor-Horndeski theory of gravity. European Physical Journal C, 2017, 77, 1.	3.9	9
189	Cosmological model of F (T) gravity with fermion fields via Noether symmetry. Journal of Physics: Conference Series, 2019, 1391, 012165. Entropic derivation of mailtimg="si1.gif" overflow="scroll" xmins:xocs="http://www.eisevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema"	0.4	9
190	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	4.1	8
191	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x Power-law entropy-corrected new agegraphic dark energy in Hořava–Lifshitz cosmology. Canadian Journal of Physics, 2012, 90, 473-479.	1.1	8
192	Cosmological solutions in $F(T)$ gravity with the presence of spinor fields. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550023.	2.0	8
193	k \$k\$ -essence in Horndeski models. Astrophysics and Space Science, 2016, 361, 1.	1.4	8
194	Dynamical instability of cylindrical symmetric collapsing star in generalized teleparallel gravity. Astrophysics and Space Science, 2016, 361, 1.	1.4	8
195	Shear-free anisotropic cosmological models in $\{\{varvec\{f\}, varvec\{(R)\}\}\}$ f (R) gravity. General Relativity and Gravitation, 2016, 48, 1.	2.0	8
196	Cosmological Yang-Mills model with k-essence. Journal of Physics: Conference Series, 2019, 1391, 012164.	0.4	8
197	Revisiting pre-inflationary Universe of family of \hat{l}_\pm -attractor in loop quantum cosmology. Classical and Quantum Gravity, 2020, 37, 195026.	4.0	8
198	Metric-Affine Myrzakulov Gravity Theories. Symmetry, 2021, 13, 1855.	2.2	8

#	ARTICLE Three annoionomy densities for three formulations with annoionomic coordinates with hybrid	IF	Citations
199	frame in <mml:math altimg="si8.svg" display="inline" id="d1e26" xmlis:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< th=""><th>2.9 mrow><m< th=""><th>8 ml:mn>3<!--</th--></th></m<></th></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mow></mml:mrow></mml:msubsup></mml:math>	2.9 mrow> <m< th=""><th>8 ml:mn>3<!--</th--></th></m<>	8 ml:mn>3 </th
200	Entropic corrections to Newton's law. Physica Scripta, 2012, 85, 065007.	2.5	7
201	On existence of a possible Lorentz invariant modified gravity in Weitzenb $\tilde{A}\P$ ck spacetime. Astrophysics and Space Science, 2015, 360, 1.	1.4	7
202	Soliton solutions of the (2+1)-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch equations. Journal of Physics: Conference Series, 2016, 738, 012018.	0.4	7
203	Noether symmetry in Horndeski Lagrangian. Canadian Journal of Physics, 2016, 94, 763-767.	1.1	7
204	Cosmology of a generalized version of holographic dark energy and reconstruction of different scalar field models. Physica Scripta, 2020, 95, 085005.	2.5	7
205	Fermionic DBI and Chaplygin gas unified models of dark energy and dark matter from f-essence. Journal of Physics: Conference Series, 2012, 354, 012011.	0.4	6
206	A Note on the Relationship Between Solutions of Einstein, Ramanujan and Chazy Equations. International Journal of Theoretical Physics, 2012, 51, 1204-1210.	1.2	6
207	Kaluza–Klein reduction and Bergmann–Wagoner bi-scalar general action of scalar–tensor gravity. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550106.	2.0	6
208	Thermodynamics and Geometry of Strange Quark Matter. International Journal of Theoretical Physics, 2015, 54, 2107-2118.	1.2	6
209	k-Essence Non-Minimally Coupled with Gauss–Bonnet Invariant for Inflation. Symmetry, 2016, 8, 57.	2.2	6
210	Integrable motion of two interacting curves, spin systems and the Manakov system. International Journal of Geometric Methods in Modern Physics, 2017, 14, 1750115.	2.0	6
211	Hirota's method for a spin model with self-consistent potential. Journal of Physics: Conference Series, 2017, 804, 012035.	0.4	6
212	A holographic bound for D3-brane. European Physical Journal C, 2017, 77, 1.	3.9	6
213	Fidelity susceptibility for Lifshitz geometries via Lifshitz holography. International Journal of Modern Physics A, 2018, 33, 1850099.	1.5	6
214	Late time evolution of a nonminimally coupled scalar field system. General Relativity and Gravitation, 2019, 51, 1.	2.0	6
215	Cosmological solutions of F (R, T) gravity model with k -essence. Journal of Physics: Conference Series, 2019, 1391, 012163.	0.4	6
216	PHYSICAL SINGULARITY IN THE REGULAR SPACE–TIME AND FUNDAMENTAL LENGTH. International Journal of Modern Physics D, 2007, 16, 755-761.	2.1	5

#	Article	IF	Citations
217	COSMIC STRING WITH TWO INTERACTING SCALAR FIELDS. Modern Physics Letters A, 2007, 22, 407-413.	1.2	5
218	On the self-similar motion of a gravitating Chaplygin fluid. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 693, 209-212.	4.1	5
219	Thermodynamics of Evolving Lorentzian Wormhole at Apparent and Event Horizons. International Journal of Theoretical Physics, 2014, 53, 4083-4094.	1.2	5
220	Realization of Holographic Entanglement Temperature for a Nearly-AdS Boundary. International Journal of Theoretical Physics, 2016, 55, 4751-4758.	1.2	5
221	Tachyon field non-minimally coupled to massive neutrino matter. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 032-032.	5.4	5
222	Inflation Driven by q-de Sitter. International Journal of Theoretical Physics, 2016, 55, 1003-1018.	1.2	5
223	Interacting dark energy models in <i>f</i> (<i>T</i>) gravity. Modern Physics Letters A, 2017, 32, 1750097.	1.2	5
224	Late-time acceleration with steep exponential potentials. European Physical Journal C, 2017, 77, 1.	3.9	5
225	Thermodynamic and holographic information dual to volume. European Physical Journal C, 2018, 78, 1.	3.9	5
226	Reconstructed f(R) Gravity and Its Cosmological Consequences in the Chameleon Scalar Field with a Scale Factor Describing the Pre-Bounce Ekpyrotic Contraction. Symmetry, 2020, 12, 1559.	2.2	5
227	Surfaces and Curves Induced by Nonlinear SchrĶdinger-Type Equations and Their Spin Systems. Symmetry, 2021, 13, 1827.	2.2	5
228	PHANTOM THICK BRANE IN 5D BULK. Modern Physics Letters A, 2008, 23, 2811-2819.	1.2	4
229	Quantized black hole and Heun function. Canadian Journal of Physics, 2012, 90, 877-881.	1.1	4
230	Einstein-Cartan gravity with scalar-fermion interactions. Open Physics, 2012, 10, .	1.7	4
231	Massless Spin–Zero Particle and the Classical Action via Hamilton–Jacobi Equation in Gödel Universe. International Journal of Theoretical Physics, 2012, 51, 2427-2432.	1.2	4
232	A Dark Energy Model with Higher Order Derivatives of H in the $f(R,T)$ Modified Gravity Model., 2014, 2014, 1-11.		4
233	Reconstruction of the Einstein-Aether gravity from other modified gravity models. European Physical Journal Plus, 2014, 129, 1.	2.6	4
234	Power Law and Logarithmic Ricci Dark Energy Models in Hořava-Lifshitz Cosmology. International Journal of Theoretical Physics, 2015, 54, 972-995.	1.2	4

#	Article	IF	CITATIONS
235	Generalized Second Law of Thermodynamics of Evolving Wormhole with Entropy Corrections. International Journal of Theoretical Physics, 2015, 54, 1750-1761.	1.2	4
236	Spherically Symmetric Solutions of Light Galileon. International Journal of Theoretical Physics, 2016, 55, 1211-1221.	1.2	4
237	Warm inflation in Horndeski gravity. General Relativity and Gravitation, 2017, 49, 1.	2.0	4
238	Holographic Cavalieri principle as a universal relation between holographic complexity and holographic entanglement entropy. International Journal of Modern Physics D, 2018, 27, 1850103.	2.1	4
239	Scenario of the evolution of the universe with equation of state of the Weierstrass type gas. Journal of Physics: Conference Series, 2019, 1391, 012162.	0.4	4
240	Thermodynamics of black plane solution. General Relativity and Gravitation, 2013, 45, 2309-2323.	2.0	3
241	Reconstruction of the equation of state for the cyclic universes in homogeneous and isotropic cosmology. Open Physics, 2013, 11, 397-411.	1.7	3
242	Loop Quantum Corrections to Statefinder Parameters of Dark Energy. International Journal of Theoretical Physics, 2013, 52, 3283-3294.	1.2	3
243	Hamiltonian structure for null curve evolution. Nonlinearity, 2014, 27, 2627-2641.	1.4	3
244	Can holographic dark energy increase the mass of the wormhole?. Astrophysics and Space Science, 2015, 356, 195-204.	1.4	3
245	Observational Constraints on Models of the Universe with Time Variable Gravitational and Cosmological Constants Along MOG. International Journal of Theoretical Physics, 2015, 54, 484-505.	1.2	3
246	k-essence for warm inflation on the brane. International Journal of Geometric Methods in Modern Physics, 2017, 14, 1750093.	2.0	3
247	Reconstruction of inflation from scalar field non-minimally coupled with the Gauss-Bonnet term. European Physical Journal Plus, 2017, 132, 1.	2.6	3
248	Strength of the singularities, equation of state and asymptotic expansion in Kaluza–Klein space time. New Astronomy, 2018, 60, 74-79.	1.8	3
249	Consequences of three modified forms of holographic dark energy models in bulk–brane interaction. Canadian Journal of Physics, 2018, 96, 112-125.	1.1	3
250	Holographic superconductors in the AdS black hole with a magnetic charge. Physica Scripta, 2012, 86, 045005.	2.5	2
251	New Holographic Dark Energy in Chern-Simons Gravity and Cosmography. International Journal of Theoretical Physics, 2014, 53, 4275-4290.	1.2	2
252	Coupled fluids model in FRW space-time. Astrophysics and Space Science, 2014, 353, 667-675.	1.4	2

#	Article	IF	CITATIONS
253	Teleparallelism by inhomogeneous dark fluid. Astrophysics and Space Science, 2015, 359, 1.	1.4	2
254	Cosmological models constructed by van der Waals fluid approximation and volumetric expansion. International Journal of Geometric Methods in Modern Physics, 2017, 14, 1750183.	2.0	2
255	Cosmic acceleration sourced by modification of gravity without extra degrees of freedom. International Journal of Geometric Methods in Modern Physics, 2019, 16, 1950128.	2.0	2
256	Inflation from the Symmetry of the Generalized Cosmological Model. Symmetry, 2021, 13, 2254.	2.2	2
257	Isotropic turbulence in the dark fluid universe with inhomogeneous equation of state. Astrophysics and Space Science, 2015, 358, 1.	1.4	1
258	Universality of a Critical Magnetic Field in a Holographic Superconductor. Chinese Physics Letters, 2015, 32, 047401.	3.3	1
259	Holographic entanglement entropy for noncommutative anti-de Sitter space. Modern Physics Letters A, 2016, 31, 1650073.	1.2	1
260	Non-equilibrium phase and entanglement entropy in 2D holographic superconductors via gauge–string duality. Canadian Journal of Physics, 2016, 94, 1102-1111.	1.1	1
261	Dispersionless limit of the Heisenberg ferromagnet equation with self-consistent potential. AIP Conference Proceedings, 2019, , .	0.4	1
262	Integrable surfaces induced by generalized Landau-Lifshitz equation with self-consistent potential. Journal of Physics: Conference Series, 2019, 1416, 012029.	0.4	1
263	Cosmology of the generalized model of LQG. Modern Physics Letters A, 2020, 35, 2050247.	1.2	1
264	Late Time Attractors of Some Varying Chaplygin Gas Cosmological Models. Symmetry, 2021, 13, 769.	2.2	1
265	On the Geometry of Stationary Heisenberg Ferromagnets. , 2004, , 543-549.		1
266	INTEGRABLE HEISENBERG FERROMAGNETS AND SOLITON GEOMETRY OF CURVES AND SURFACES., 2003,,.		1
267	Generalized F(R, T) cosmological models with fermionic fields. Journal of Physics: Conference Series, 2021, 2090, 012063.	0.4	1
268	Vector generalization of a system of equations of interacting high-frequency and low-frequency waves. Theoretical and Mathematical Physics(Russian Federation), 1987, 72, 693-702.	0.9	0
269	Soft Singularity and the Fundamental Length. Foundations of Physics Letters, 2006, 19, 169-177.	0.6	0
270	PHANTOM "RENORMALIZATION" OF MASS OF A QUANTIZED ELECTRIC CHARGE. Modern Physics Letters A, 2010, 25, 3017-3026.	1.2	0

#	Article	IF	Citations
271	Higher-twist mechanism and inclusive gluon production in pion–proton collisions. International Journal of Modern Physics A, 2015, 30, 1550217.	1.5	0
272	Reciprocal NUT spacetimes. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550083.	2.0	0
273	de Sitter space–time as a natural superconductor. Canadian Journal of Physics, 2017, 95, 111-113.	1.1	0
274	Phase Transition via Entanglement Entropy in <i>AdS</i> ₃ / <i>CFT</i> ₂ Superconductors., 2018,,.		0
275	Entanglement Entropy for Time Dependent Two Dimensional Holographic Superconductor. , 2018, , .		0
276	Cosmology of f-essence with inhomogeneous viscous fluid. Journal of Physics: Conference Series, 2019, 1391, 012167.	0.4	0
277	Soliton surfaces induced by the Fokas-Lenells equation. Journal of Physics: Conference Series, 2019, 1416, 012042.	0.4	0
278	On nonlocal reductions of a generalized Heisenberg ferromagnet equation. AIP Conference Proceedings, 2019, , .	0.4	0
279	Dispersionless limit of the $(1+1)$ -dimensional Fokas-Lenells equation. Journal of Physics: Conference Series, 2019, 1391, 012103.	0.4	0
280	On Continuous Limits of Some Generalized Compressible Heisenberg Spin Chains. , 2004, , 535-542.		0
281	Three-partite vertex model and knot invariants. Physica A: Statistical Mechanics and Its Applications, 2022, 597, 127283.	2.6	O