Arne W Nolte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4920142/publications.pdf

Version: 2024-02-01

	840776	940533
1,005	11	16
citations	h-index	g-index
=	=	
18	18	1696
docs citations	times ranked	citing authors
		1,005 11 h-index 18 18

#	Article	IF	CITATIONS
1	Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress. Molecular Biology and Evolution, 2020, 37, 167-182.	8.9	26
2	Genomic Access to the Diversity of Fishes. Methods in Molecular Biology, 2020, 2090, 397-411.	0.9	4
3	The Role of Plasticity and Adaptation in the Incipient Speciation of a Fire Salamander Population. Genes, 2019, 10, 875.	2.4	6
4	Genomeâ€wide patterns of transposon proliferation in an evolutionary young hybrid fish. Molecular Ecology, 2019, 28, 1491-1505.	3.9	18
5	Morphological and transcriptomic analyses reveal three discrete primary stages of postembryonic development in the common fire salamander, <i>Salamandra salamandra </i> Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 96-108.	1.3	10
6	Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Molecular Ecology, 2018, 27, 2698-2713.	3.9	9
7	Copy number increases of transposable elements and proteinâ€coding genes in an invasive fish of hybrid origin. Molecular Ecology, 2017, 26, 4712-4724.	3.9	28
8	Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Molecular Phylogenetics and Evolution, 2017, 115, 16-26.	2.7	44
9	Ectodysplasin signalling genes and phenotypic evolution in sculpins (<i>Cottus</i>). Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150746.	2.6	9
10	Ecological transcriptomics – a nonâ€lethal sampling approach for endangered fire salamanders. Methods in Ecology and Evolution, 2015, 6, 1417-1425.	5.2	16
11	Transcriptome changes after genomeâ€wide admixture in invasive sculpins (<i>Cottus</i>). Molecular Ecology, 2012, 21, 4797-4810.	3.9	21
12	Rapid formation of distinct hybrid lineages after secondary contact of two fish species (<i>Cottus</i>) Tj ETQq0	0 g _. rgBT /0	Overlock 10 T
13	Understanding the onset of hybrid speciation. Trends in Genetics, 2010, 26, 54-58.	6.7	200
14	Mining transcriptome sequences towards identifying adaptive single nucleotide polymorphisms in lake whitefish species pairs (<i>Coregonus</i> spp. Salmonidae). Molecular Ecology, 2010, 19, 115-131.	3.9	159
15	On the origin of species: insights from the ecological genomics of lake whitefish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1783-1800.	4.0	218
16	An invasive lineage of sculpins, <i>Cottus </i> sp. (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2379-2387.	2.6	180