
Gabriel Zoldak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4919685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allosteric Inter-Domain Contacts in Bacterial Hsp70 Are Located in Regions That Avoid Insertion and Deletion Events. International Journal of Molecular Sciences, 2022, 23, 2788.	4.1	1
2	Single-Molecule Mechanics of Protein Nanomachines. , 2022, , 67-79.		0
3	Nanoimpact in Plants: Lessons from the Transcriptome. Plants, 2021, 10, 751.	3.5	11
4	SlyD Accelerates <i>trans</i> -to- <i>cis</i> Prolyl Isomerization in a Mechanosignaling Protein under Load. Journal of Physical Chemistry B, 2021, 125, 8712-8721.	2.6	3
5	Power Spectral Density Analysis of Nanowire-Anchored Fluctuating Microbead Reveals a Double Lorentzian Distribution. Mathematics, 2021, 9, 1748.	2.2	2
6	Salt-dependent passive adsorption of IgG1κ-type monoclonal antibodies on hydrophobic microparticles. Biophysical Chemistry, 2021, 275, 106609.	2.8	4
7	Classifying Residues in Mechanically Stable and Unstable Substructures Based on a Protein Sequence: The Case Study of the DnaK Hsp70 Chaperone. Nanomaterials, 2021, 11, 2198.	4.1	3
8	Interpretation of Single-Molecule Force Experiments on Proteins Using Normal Mode Analysis. Nanomaterials, 2021, 11, 2795.	4.1	1
9	Assessing the Viscoelasticity of Photopolymer Nanowires Using a Three-Parameter Solid Model for Bending Recovery Motion. Nanomaterials, 2021, 11, 2961.	4.1	3
10	A kinetic coupling between protein unfolding and aggregation controls timeâ€dependent solubility of the human myeloma antibody light chain. Protein Science, 2020, 29, 2408-2421.	7.6	2
11	Entropy-Based Strategies for Rapid Pre-Processing and Classification of Time Series Data from Single-Molecule Force Experiments. Entropy, 2020, 22, 701.	2.2	1
12	Bending dynamics of viscoelastic photopolymer nanowires. Applied Physics Letters, 2020, 117, .	3.3	4
13	Ion-Specific Protein/Water Interface Determines the Hofmeister Effect on the Kinetic Stability of Glucose Oxidase. Journal of Physical Chemistry B, 2019, 123, 7965-7973.	2.6	12
14	An Active, Ligand-Responsive Pulling Geometry Reports on Internal Signaling between Subdomains of the DnaK Nucleotide-Binding Domain in Single-Molecule Mechanical Experiments. Biochemistry, 2019, 58, 4744-4750.	2.5	10
15	Stable Substructures in Proteins and How to Find Them Using Single-Molecule Force Spectroscopy. Methods in Molecular Biology, 2019, 1958, 263-282.	0.9	4
16	A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4666-4671.	7.1	38
17	Synergistic Effects of Copper Sites on Apparent Stability of Multicopper Oxidase, Fet3p. International Journal of Molecular Sciences, 2018, 19, 269.	4.1	3
18	Nanomechanics of the substrate binding domain of Hsp70 determine its allosteric ATP-induced conformational change. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6040-6045.	7.1	28

GABRIEL ZOLDAK

#	Article	IF	CITATIONS
19	The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions. Protein Science, 2017, 26, 1236-1239.	7.6	22
20	Analysis of IgG kinetic stability by differential scanning calorimetry, probe fluorescence and light scattering. Protein Science, 2017, 26, 2229-2239.	7.6	14
21	The molten-globule residual structure is critical for reflavination of glucose oxidase. Biophysical Chemistry, 2017, 230, 74-83.	2.8	9
22	Subnanometre enzyme mechanics probed by single-molecule force spectroscopy. Nature Communications, 2016, 7, 10848.	12.8	58
23	A Compact Native 24-Residue Supersecondary Structure Derived from the Villin Headpiece Subdomain. Biophysical Journal, 2015, 108, 678-686.	0.5	7
24	Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10389-10394.	7.1	41
25	Force-dependent isomerization kinetics of a highly conserved proline switch modulates the mechanosensing region of filamin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5568-5573.	7.1	45
26	Force as a single molecule probe of multidimensional protein energy landscapes. Current Opinion in Structural Biology, 2013, 23, 48-57.	5.7	117
27	Unique Proline-Rich Domain Regulates the Chaperone Function of AIPL1. Biochemistry, 2013, 52, 2089-2096.	2.5	20
28	The Prolyl Isomerase SlyD Is a Highly Efficient Enzyme but Decelerates the Conformational Folding of a Client Protein. Journal of the American Chemical Society, 2013, 135, 4372-4379.	13.7	5
29	Ultrafast folding kinetics and cooperativity of villin headpiece in single-molecule force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18156-18161.	7.1	73
30	Folding Mechanism of an Extremely Thermostable (βα) ₈ -Barrel Enzyme: A High Kinetic Barrier Protects the Protein from Denaturation. Biochemistry, 2012, 51, 3420-3432.	2.5	10
31	Cooperation of the Prolyl Isomerase and Chaperone Activities of the Protein Folding Catalyst SlyD. Journal of Molecular Biology, 2011, 406, 176-194.	4.2	21
32	Activity of NADH oxidase from Thermus thermophilus in water/alcohol binary mixtures is limited by the stability of quaternary structure. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 60-67.	1.8	8
33	Chaperone domains convert prolyl isomerases into generic catalysts of protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20282-20287.	7.1	58
34	A Library of Fluorescent Peptides for Exploring the Substrate Specificities of Prolyl Isomerases. Biochemistry, 2009, 48, 10423-10436.	2.5	56
35	Consequences of Domain Insertion on the Stability and Folding Mechanism of a Protein. Journal of Molecular Biology, 2009, 386, 1138-1152.	4.2	23
36	NMR Solution Structure of SlyD from Escherichia coli: Spatial Separation of Prolyl Isomerase and Chaperone Function. Journal of Molecular Biology, 2009, 387, 295-305.	4.2	70

GABRIEL ZOLDAK

#	Article	IF	CITATIONS
37	Flexibility and enzyme activity of NADH oxidase from Thermus thermophilus in the presence of monovalent cations of Hofmeister series. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 789-795.	2.3	41
38	Role of Copper in Thermal Stability of Human Ceruloplasmin. Biophysical Journal, 2008, 94, 1384-1391.	0.5	42
39	Multidomain Initiation Factor 2 from <i>Thermus thermophilus</i> Consists of the Individual Autonomous Domains. Biochemistry, 2008, 47, 4992-5005.	2.5	5
40	Release Factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies. Nucleic Acids Research, 2007, 35, 1343-1353.	14.5	43
41	Conformational stability and dynamics of cytochrome c affect its alkaline isomerization. Journal of Biological Inorganic Chemistry, 2007, 12, 257-266.	2.6	23
42	Cofactor assisted gating mechanism in the active site of NADH oxidase from Thermus thermophilus. Proteins: Structure, Function and Bioinformatics, 2006, 64, 465-476.	2.6	11
43	Unusual effect of salts on the homodimeric structure of NADH oxidase from Thermus thermophilus in acidic pH. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 129-137.	2.3	11
44	Irreversible thermal denaturation of elongation factor Ts from Thermus thermophilus effect of the residual structure and intermonomer disulfide bond. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1277-1285.	2.3	5
45	Irreversible Thermal Denaturation of Glucose Oxidase from Aspergillus niger Is the Transition to the Denatured State with Residual Structure. Journal of Biological Chemistry, 2004, 279, 47601-47609.	3.4	122
46	Modulation of activity of NADH oxidase fromThermus thermophilusthrough change in flexibility in the enzyme active site induced by Hofmeister series anions. FEBS Journal, 2004, 271, 48-57.	0.2	69
47	Role of conformational flexibility for enzymatic activity in NADH oxidase fromThermus thermophilus. FEBS Journal, 2003, 270, 4887-4897.	0.2	34
48	Thermodynamic properties of nucleotide-free EF-Tu from Thermus thermophilus in the presence of low-molecular weight effectors of its GTPase activity. BBA - Proteins and Proteomics, 2002, 1597, 22-27.	2.1	5