Eileanoir B Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4919273/publications.pdf

Version: 2024-02-01

471509 434195 1,144 43 17 31 citations h-index g-index papers 49 49 49 1383 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Timing of selective basal ganglia white matter loss in premanifest Huntington's disease. NeuroImage: Clinical, 2022, 33, 102927.	2.7	10
2	Neurofilament light-associated connectivity in young-adult Huntington's disease is related to neuronal genes. Brain, 2022, 145, 3953-3967.	7.6	3
3	Fronto-striatal circuits for cognitive flexibility in far from onset Huntington's disease: evidence from the Young Adult Study. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 143-149.	1.9	26
4	Dynamics of Cortical Degeneration Over a Decade in Huntington's Disease. Biological Psychiatry, 2021, 89, 807-816.	1.3	32
5	Brain-derived neurotrophic factor in cerebrospinal fluid and plasma is not a biomarker for Huntington's disease. Scientific Reports, 2021, 11, 3481.	3.3	12
6	Altered iron and myelin in premanifest Huntington's Disease more than 20 years before clinical onset: Evidence from the cross-sectional HD Young Adult Study. EBioMedicine, 2021, 65, 103266.	6.1	20
7	Validating Automated Segmentation Tools in the Assessment of Caudate Atrophy in Huntington's Disease. Frontiers in Neurology, 2021, 12, 616272.	2.4	3
8	Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington's disease. Journal of Neurochemistry, 2021, 158, 539-553.	3.9	18
9	A Multi-Study Model-Based Evaluation of the Sequence of Imaging and Clinical Biomarker Changes in Huntington's Disease. Frontiers in Big Data, 2021, 4, 662200.	2.9	2
10	Aberrant Striatal Value Representation in Huntington's Disease Gene Carriers 25 Years Before Onset. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 910-918.	1.5	1
11	F05â€Biological and clinical characteristics of gene carriers far from predicted onset in the hd-yas study: a cross-sectional analysis. , 2021, , .		O
12	Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurology: Genetics, 2021, 7, e617.	1.9	20
13	Characterizing White Matter in Huntington's Disease. Movement Disorders Clinical Practice, 2020, 7, 52-60.	1.5	20
14	9â€Aberrant striatal value representation in Huntington's disease gene carriers 25 years before onset. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, e4.1-e4.	1.9	0
15	Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington's disease. Science Translational Medicine, 2020, 12, .	12.4	64
16	Longitudinal Structural <scp>MRI</scp> in Neurologically Healthy Adults. Journal of Magnetic Resonance Imaging, 2020, 52, 1385-1399.	3.4	5
17	Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurology, The, 2020, 19, 502-512.	10.2	122
18	Robust Markers and Sample Sizes for Multicenter Trials of Huntington Disease. Annals of Neurology, 2020, 87, 751-762.	5.3	22

#	Article	IF	Citations
19	Multimodal characterization of the visual network in Huntington's disease gene carriers. Clinical Neurophysiology, 2019, 130, 2053-2059.	1.5	0
20	Cerebrospinal fluid flow dynamics in Huntington's disease evaluated by phase contrast <scp>MRI</scp> . European Journal of Neuroscience, 2019, 49, 1632-1639.	2.6	5
21	Automated Segmentation of Cortical Grey Matter from T1-Weighted MRI Images. Journal of Visualized Experiments, 2019, , .	0.3	0
22	Huntington's disease: Brain imaging in Huntington's disease. Progress in Molecular Biology and Translational Science, 2019, 165, 321-369.	1.7	20
23	Predicting clinical diagnosis in Huntington's disease: An imaging polymarker. Annals of Neurology, 2018, 83, 532-543.	5.3	26
24	Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology, 2018, 90, e717-e723.	1.1	65
25	An imageâ€based model of brain volume biomarker changes in Huntington's disease. Annals of Clinical and Translational Neurology, 2018, 5, 570-582.	3.7	50
26	Cerebrospinal fluid neurogranin and TREM2 in Huntington's disease. Scientific Reports, 2018, 8, 4260.	3.3	25
27	Brain Regions Showing White Matter Loss inÂHuntington's Disease Are Enriched for Synaptic and Metabolic Genes. Biological Psychiatry, 2018, 83, 456-465.	1.3	79
28	D10â€Neurofilament light protein in blood predicts regional atrophy in huntington's disease. , 2018, , .		0
29	E11â€Compensation in huntington's disease. , 2018, , .		0
30	F22â€Robust biomarkers of huntington's disease progression: observations from the track-hd, predict-hd and image-hd studies. , 2018, , .		0
31	D09â€Parallel evaluation of mutant huntingtin and neurofilament light as biomarkers for huntington's disease: the hd-csf study. , 2018, , .		0
32	Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington's disease. Science Translational Medicine, 2018, 10, .	12.4	134
33	Testing a longitudinal compensation model in premanifest Huntington's disease. Brain, 2018, 141, 2156-2166.	7.6	33
34	E01â€Modelling the trajectory of cortical atrophy in huntington's disease. , 2018, , .		0
35	E07â€Cerebrospinal fluid flow dynamics in huntington's disease using phase contrast MRI: a pilot cross-sectional study. , 2018, , .		0
36	Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington's Disease. Frontiers in Neurology, 2017, 8, 519.	2.4	31

#	ARTICLE	IF	CITATIONS
37	Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington's disease. JCl Insight, 2017, 2, .	5.0	37
38	D9â€An evaluation of methods for the volumetric measurement of grey matter in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A37.1-A37.	1.9	O
39	Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease. Journal of the International Neuropsychological Society, 2016, 22, 595-608.	1.8	44
40	Compensation in Preclinical Huntington's Disease: Evidence From the Track-On HD Study. EBioMedicine, 2015, 2, 1420-1429.	6.1	122
41	Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling. Frontiers in Human Neuroscience, 2015, 9, 634.	2.0	8
42	MEG Adaptation Resolves the Spatiotemporal Characteristics of Face-Sensitive Brain Responses. Journal of Neuroscience, 2015, 35, 15088-15096.	3.6	15
43	The impact of occipital lobe cortical thickness on cognitive task performance: An investigation in Huntington's Disease. Neuropsychologia, 2015, 79, 138-146.	1.6	56