
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4917499/publications.pdf Version: 2024-02-01

TINA KVNDT

#	Article	lF	CITATIONS
1	Spatiotemporal expression profile of novel and known small RNAs throughout rice plant development focussing on seed tissues. BMC Genomics, 2022, 23, 44.	2.8	4
2	Rice diterpenoid phytoalexins are involved in defence against parasitic nematodes and shape rhizosphere nematode communities. New Phytologist, 2022, 235, 1231-1245.	7.3	12
3	Dehydroascorbate induces plant resistance in rice against rootâ€knot nematode <i>Meloidogyne graminicola</i> . Molecular Plant Pathology, 2022, 23, 1303-1319.	4.2	13
4	Genetic disruption of <i>Arabidopsis</i> secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion. ISME Journal, 2022, 16, 2230-2241.	9.8	9
5	Plant defense priming in the field: a review. , 2021, , 87-124.		9
6	Genomeâ€wide shifts in histone modifications at early stage of rice infection with <i>Meloidogyne graminicola</i> . Molecular Plant Pathology, 2021, 22, 440-455.	4.2	14
7	Chitin in Strawberry Cultivation: Foliar Growth and Defense Response Promotion, but Reduced Fruit Yield and Disease Resistance by Nutrient Imbalances. Molecular Plant-Microbe Interactions, 2021, 34, 227-239.	2.6	19
8	Benzoxazinoids selectively affect maize root-associated nematode taxa. Journal of Experimental Botany, 2021, 72, 3835-3845.	4.8	15
9	The phenylpropanoid pathway inhibitor piperonylic acid induces broadâ€spectrum pest and disease resistance in plants. Plant, Cell and Environment, 2021, 44, 3122-3139.	5.7	31
10	The Induced Resistance Lexicon: Do's and Don'ts. Trends in Plant Science, 2021, 26, 685-691.	8.8	84
11	Phytohormones selectively affect plant parasitic nematodes associated with Arabidopsis roots. New Phytologist, 2021, 232, 1272-1285.	7.3	11
12	Non-coding RNAs in the interaction between rice and Meloidogyne graminicola. BMC Genomics, 2021, 22, 560.	2.8	12
13	Plant parasitic cyst nematodes redirect host indole metabolism via NADPH oxidaseâ€mediated ROS to promote infection. New Phytologist, 2021, 232, 318-331.	7.3	9
14	Biochar-Enhanced Resistance to Botrytis cinerea in Strawberry Fruits (But Not Leaves) Is Associated With Changes in the Rhizosphere Microbiome. Frontiers in Plant Science, 2021, 12, 700479.	3.6	11
15	Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 2021, 12, 713870.	3.6	8
16	Short-term effects of cadmium on leaf growth and nutrient transport in rice plants. Plant Science, 2021, 313, 111054.	3.6	15
17	Beneficial worm allies warn plants of parasite attack belowground and reduce aboveground herbivore preference and performance. Molecular Ecology, 2021, , .	3.9	5
18	Cucurbitaceae COld Peeling Extracts (CCOPEs) Protect Plants From Root-Knot Nematode Infections Through Induced Resistance and Nematicidal Effects. Frontiers in Plant Science, 2021, 12, 785699.	3.6	4

#	Article	IF	CITATIONS
19	Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxidants and Redox Signaling, 2020, 32, 463-485.	5.4	84
20	The Use of PTI-Marker Genes to Identify Novel Compounds that Establish Induced Resistance in Rice. International Journal of Molecular Sciences, 2020, 21, 317.	4.1	16
21	Ascorbate Oxidase Induces Systemic Resistance in Sugar Beet Against Cyst Nematode Heterodera schachtii. Frontiers in Plant Science, 2020, 11, 591715.	3.6	22
22	A Phytochemical Perspective on Plant Defense Against Nematodes. Frontiers in Plant Science, 2020, 11, 602079.	3.6	43
23	Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode <i>Hirschmanniella oryzae</i> , increase host susceptibility by manipulating secondary metabolite content of rice. Molecular Plant Pathology, 2020, 21, 1634-1646.	4.2	12
24	Molecular insights into the compatible and incompatible interactions between sugar beet and the beet cyst nematode. BMC Plant Biology, 2020, 20, 483.	3.6	21
25	Evaluation of Metabarcoding Primers for Analysis of Soil Nematode Communities. Diversity, 2020, 12, 388.	1.7	20
26	Genomeâ€wide DNA hypomethylation shapes nematode patternâ€ŧriggered immunity in plants. New Phytologist, 2020, 227, 545-558.	7.3	44
27	Rootâ€knot nematodes induce gall formation by recruiting developmental pathways of postâ€embryonic organogenesis and regeneration to promote transient pluripotency. New Phytologist, 2020, 227, 200-215.	7.3	41
28	Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice. Journal of Experimental Botany, 2020, 71, 4271-4284.	4.8	26
29	Systemic defense activation by COS-OGA in rice against root-knot nematodes depends on stimulation of the phenylpropanoid pathway. Plant Physiology and Biochemistry, 2019, 142, 202-210.	5.8	45
30	Selection of miRNA reference genes for plant defence studies in rice (Oryza sativa). Planta, 2019, 250, 2101-2110.	3.2	9
31	Strigolactones enhance rootâ€knot nematode (<i>Meloidogyne graminicola</i>) infection in rice by antagonizing the jasmonate pathway. New Phytologist, 2019, 224, 454-465.	7.3	47
32	Jasmonate-Induced Defense Mechanisms in the Belowground Antagonistic Interaction Between Pythium arrhenomanes and Meloidogyne graminicola in Rice. Frontiers in Plant Science, 2019, 10, 1515.	3.6	15
33	Gibberellin antagonizes jasmonateâ€induced defense against <i>Meloidogyne graminicola</i> in rice. New Phytologist, 2018, 218, 646-660.	7.3	71
34	Mechanisms of resistance in the rice cultivar Manikpukha to the rice stem nematode <i>Ditylenchus angustus</i> . Molecular Plant Pathology, 2018, 19, 1391-1402.	4.2	22
35	Trace analysis of multi-class phytohormones in Oryza sativa using different scan modes in high-resolution Orbitrap mass spectrometry: method validation, concentration levels, and screening in multiple accessions. Analytical and Bioanalytical Chemistry, 2018, 410, 4527-4539.	3.7	28
36	Trichoderma-Inoculated Miscanthus Straw Can Replace Peat in Strawberry Cultivation, with Beneficial Effects on Disease Control. Frontiers in Plant Science, 2018, 9, 213.	3.6	28

#	Article	IF	CITATIONS
37	<i>Meloidogyne graminicola</i> : a major threat to rice agriculture. Molecular Plant Pathology, 2017, 18, 3-15.	4.2	134
38	Below-Ground Attack by the Root Knot Nematode <i>Meloidogyne graminicola</i> Predisposes Rice to Blast Disease. Molecular Plant-Microbe Interactions, 2017, 30, 255-266.	2.6	28
39	Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots. Annals of Botany, 2017, 119, 885-899.	2.9	54
40	Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice-Meloidogyne graminicola Interaction. Frontiers in Plant Science, 2017, 8, 951.	3.6	58
41	Interactions between the oomycete Pythium arrhenomanes and the rice root-knot nematode Meloidogyne graminicola in aerobic Asian rice varieties. Rice, 2016, 9, 36.	4.0	9
42	Redirection of auxin flow inArabidopsis thalianaroots after infection by root-knot nematodes. Journal of Experimental Botany, 2016, 67, 4559-4570.	4.8	69
43	Thiamineâ€induced priming against rootâ€knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 2016, 17, 614-624.	4.2	54
44	Identification of Bangladeshi rice varieties resistant to ufra disease caused by the nematode Ditylenchus angustus. Crop Protection, 2016, 79, 162-169.	2.1	6
45	Analysis of fungal endophytes associated with rice roots from irrigated and upland ecosystems in Kenya. Plant and Soil, 2016, 405, 371-380.	3.7	23
46	Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biology, 2015, 15, 267.	3.6	92
47	A high-resolution melt (HRM) assay to characterize CYP51 haplotypes of the wheat pathogen Mycosphaerella graminicola. Crop Protection, 2015, 71, 12-18.	2.1	7
48	The role of thionins in rice defence against root pathogens. Molecular Plant Pathology, 2015, 16, 870-881.	4.2	33
49	β-Aminobutyric Acid–Induced Resistance Against Root-Knot Nematodes in Rice Is Based on Increased Basal Defense. Molecular Plant-Microbe Interactions, 2015, 28, 519-533.	2.6	75
50	Recent Advances in Understanding Plant–Nematode Interactions in Monocots. Advances in Botanical Research, 2015, 73, 189-219.	1.1	8
51	The genome of cultivated sweet potato contains <i>Agrobacterium</i> T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5844-5849.	7.1	236
52	Systemic Suppression of the Shoot Metabolism upon Rice Root Nematode Infection. PLoS ONE, 2014, 9, e106858.	2.5	13
53	Vasconcellea for Papaya Improvement. , 2014, , 47-79.		15
54	Analysis of the transcriptome of <i><scp>H</scp>irschmanniella oryzae</i> to explore potential survival strategies and host–nematode interactions. Molecular Plant Pathology, 2014, 15, 352-363.	4.2	23

#	Article	IF	CITATIONS
55	Plant-Parasitic Nematode Infections in Rice: Molecular and Cellular Insights. Annual Review of Phytopathology, 2014, 52, 135-153.	7.8	123
56	Sensitivity towards DMI fungicides and haplotypic diversity of their CYP51 target in the Mycosphaerella graminicola population of Flanders. Journal of Plant Diseases and Protection, 2014, 121, 156-163.	2.9	6
57	Nematode feeding sites: unique organs in plant roots. Planta, 2013, 238, 807-818.	3.2	158
58	Identification of candidate effector genes in the transcriptome of the rice root knot nematode <i><scp>M</scp>eloidogyne graminicola</i> . Molecular Plant Pathology, 2013, 14, 379-390.	4.2	69
59	Brassinosteroids Suppress Rice Defense Against Root-Knot Nematodes Through Antagonism With the Jasmonate Pathway. Molecular Plant-Microbe Interactions, 2013, 26, 106-115.	2.6	118
60	How far a protected area contributes to conserve habitat species composition and population structure of endangered African tree species (Benin, West Africa). Ecological Complexity, 2013, 13, 60-68.	2.9	40
61	Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. Journal of Experimental Botany, 2013, 64, 3885-3898.	4.8	128
62	Transcriptional silencing of RNAi constructs against nematodeÂgenes in Arabidopsis. Nematology, 2013, 15, 519-528.	0.6	12
63	An insight into critical endocycle genes for plant-parasitic nematode feeding sites establishment. Plant Signaling and Behavior, 2013, 8, e24223.	2.4	12
64	Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing. Journal of Experimental Botany, 2012, 63, 2141-2157.	4.8	41
65	<i>CCS52</i> and <i>DEL1</i> genes are key components of the endocycle in nematodeâ€induced feeding sites. Plant Journal, 2012, 72, 185-198.	5.7	75
66	Abscisic acid interacts antagonistically with classical defense pathways in rice–migratory nematode interaction. New Phytologist, 2012, 196, 901-913.	7.3	120
67	Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytologist, 2012, 196, 887-900.	7.3	157
68	Genetic Evidence of the Contribution of Ethnic Migrations to the Propagation and Persistence of the Rare and Declining Scrambling Shrub Caesalpinia bonduc L. Human Ecology, 2012, 40, 117-128.	1.4	7
69	Comparing systemic defenceâ€related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biology, 2012, 14, 73-82.	3.8	76
70	Vasconcellea. , 2011, , 213-249.		22
71	Quantitative morphological descriptors confirm traditionally classified morphotypes of Tamarindus indica L. fruits. Genetic Resources and Crop Evolution, 2011, 58, 299-309.	1.6	36
72	Natural variation in fruit characteristics, seed germination and seedling growth of Adansonia digitata L. in Benin. New Forests, 2011, 41, 113-125.	1.7	44

#	Article	IF	CITATIONS
73	The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice. Plant Physiology, 2011, 157, 305-316.	4.8	318
74	Nematode Resistant GM Crops in Industrialised and Developing Countries. , 2011, , 517-541.		35
75	The Role of Pseudo-Endoglucanases in the Evolution of Nematode Cell Wall-Modifying Proteins. Journal of Molecular Evolution, 2010, 70, 441-452.	1.8	20
76	Women's Traditional Knowledge, Use Value, and the Contribution of Tamarind (Tamarindus indica L.) to Rural Households' Cash Income in Benin. Economic Botany, 2010, 64, 248-259.	1.7	65
77	Analysis of ITS of the rDNA to infer phylogenetic relationships among Vietnamese Citrus accessions. Genetic Resources and Crop Evolution, 2010, 57, 183-192.	1.6	16
78	Genetic diversity, population structure and taxonomy of Calopteryx splendens (Odonata:) Tj ETQq0 0 0 rgBT /O	verlock 10 1.2	Tf 50 542 Td
79	Spatial genetic structuring of baobab (<i>Adansonia digitata</i> , Malvaceae) in the traditional agroforestry systems of West Africa. American Journal of Botany, 2009, 96, 950-957.	1.7	45
80	Expressed sequence tags of the peanut pod nematode Ditylenchus africanus: The first transcriptome analysis of an Anguinid nematode. Molecular and Biochemical Parasitology, 2009, 167, 32-40.	1.1	50
81	Genetic fingerprinting using AFLP cannot distinguish traditionally classified baobab morphotypes. Agroforestry Systems, 2009, 75, 157-165.	2.0	44
82	Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environment International, 2009, 35, 700-706.	10.0	87
83	Folk Classification, Perception, and Preferences of Baobab Products in West Africa: Consequences for Species Conservation and Improvement. Economic Botany, 2008, 62, 74-84.	1.7	130
84	<i>AtCDKA;1</i> silencing in <i>Arabidopsis thaliana</i> reduces reproduction of sedentary plantâ€parasitic nematodes. Plant Biotechnology Journal, 2008, 6, 749-757.	8.3	22
85	A family of GHF5 endoâ€1,4â€betaâ€glucanases in the migratory plantâ€parasitic nematode <i>Radopholus similis</i> . Plant Pathology, 2008, 57, 581-590.	2.4	36
86	Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event. BMC Evolutionary Biology, 2008, 8, 305.	3.2	50
87	Purification and characterization of the cysteine proteinases in the latex of Vasconcellea spp FEBS Journal, 2007, 274, 451-462.	4.7	23
88	Cross-species microsatellite amplification in Vasconcellea and related genera and their use in germplasm classification. Genome, 2006, 49, 786-798.	2.0	18
89	Evidence of Natural Hybridization and Introgression between Vasconcellea Species (Caricaceae) from Southern Ecuador Revealed by Chloroplast, Mitochondrial and Nuclear DNA Markers. Annals of Botany, 2006, 97, 793-805.	2.9	38
90	Patterns of Genetic and Morphometric Diversity in Baobab (Adansonia digitata) Populations Across Different Climatic Zones of Benin (West Africa). Annals of Botany, 2006, 97, 819-830.	2.9	110

#	Article	IF	CITATIONS
91	Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data. Molecular Phylogenetics and Evolution, 2005, 37, 442-459.	2.7	39
92	Isolation and characterization of microsatellite loci in the highland papaya Vasconcellea�×heilbornii V. Badillo (Caricaceae). Molecular Ecology Notes, 2005, 5, 590-592.	1.7	4
93	Maternal inheritance of cytoplasmic organelles in intergeneric hybrids of Carica papaya L. and Vasconcellea spp. (Caricaceae Dumort., Brassicales). Euphytica, 2005, 143, 161-168.	1.2	14
94	Species relationships in the genus <i>Vasconcellea</i> (Caricaceae) based on molecular and morphological evidence. American Journal of Botany, 2005, 92, 1033-1044.	1.7	44
95	Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theoretical and Applied Genetics, 2004, 108, 1473-1486.	3.6	76
96	AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theoretical and Applied Genetics, 2002, 105, 289-297.	3.6	88