Tina Kyndt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4917499/publications.pdf

Version: 2024-02-01

96 papers 4,444 citations

38 h-index 62 g-index

100 all docs

100 docs citations

100 times ranked

3513 citing authors

#	Article	IF	CITATIONS
1	The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice. Plant Physiology, 2011, 157, 305-316.	4.8	318
2	The genome of cultivated sweet potato contains <i>Agrobacterium</i> T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5844-5849.	7.1	236
3	Nematode feeding sites: unique organs in plant roots. Planta, 2013, 238, 807-818.	3.2	158
4	Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytologist, 2012, 196, 887-900.	7.3	157
5	<i>Meloidogyne graminicola</i> : a major threat to rice agriculture. Molecular Plant Pathology, 2017, 18, 3-15.	4.2	134
6	Folk Classification, Perception, and Preferences of Baobab Products in West Africa: Consequences for Species Conservation and Improvement. Economic Botany, 2008, 62, 74-84.	1.7	130
7	Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. Journal of Experimental Botany, 2013, 64, 3885-3898.	4.8	128
8	Plant-Parasitic Nematode Infections in Rice: Molecular and Cellular Insights. Annual Review of Phytopathology, 2014, 52, 135-153.	7.8	123
9	Abscisic acid interacts antagonistically with classical defense pathways in rice–migratory nematode interaction. New Phytologist, 2012, 196, 901-913.	7.3	120
10	Brassinosteroids Suppress Rice Defense Against Root-Knot Nematodes Through Antagonism With the Jasmonate Pathway. Molecular Plant-Microbe Interactions, 2013, 26, 106-115.	2.6	118
11	Patterns of Genetic and Morphometric Diversity in Baobab (Adansonia digitata) Populations Across Different Climatic Zones of Benin (West Africa). Annals of Botany, 2006, 97, 819-830.	2.9	110
12	Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biology, 2015, 15, 267.	3 . 6	92
13	AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theoretical and Applied Genetics, 2002, 105, 289-297.	3.6	88
14	Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environment International, 2009, 35, 700-706.	10.0	87
15	Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxidants and Redox Signaling, 2020, 32, 463-485.	5.4	84
16	The Induced Resistance Lexicon: Do's and Don'ts. Trends in Plant Science, 2021, 26, 685-691.	8.8	84
17	Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theoretical and Applied Genetics, 2004, 108, 1473-1486.	3. 6	76
18	Comparing systemic defenceâ€related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biology, 2012, 14, 73-82.	3.8	76

#	Article	IF	Citations
19	<i>CCS52</i> and <i>DEL1</i> genes are key components of the endocycle in nematodeâ€induced feeding sites. Plant Journal, 2012, 72, 185-198.	5.7	75
20	β-Aminobutyric Acid–Induced Resistance Against Root-Knot Nematodes in Rice Is Based on Increased Basal Defense. Molecular Plant-Microbe Interactions, 2015, 28, 519-533.	2.6	75
21	Gibberellin antagonizes jasmonateâ€induced defense against <i>Meloidogyne graminicola</i> in rice. New Phytologist, 2018, 218, 646-660.	7.3	71
22	Identification of candidate effector genes in the transcriptome of the rice root knot nematode <i><scp>M</scp>eloidogyne graminicola</i> . Molecular Plant Pathology, 2013, 14, 379-390.	4.2	69
23	Redirection of auxin flow inArabidopsis thalianaroots after infection by root-knot nematodes. Journal of Experimental Botany, 2016, 67, 4559-4570.	4.8	69
24	Women's Traditional Knowledge, Use Value, and the Contribution of Tamarind (Tamarindus indica L.) to Rural Households' Cash Income in Benin. Economic Botany, 2010, 64, 248-259.	1.7	65
25	Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice-Meloidogyne graminicola Interaction. Frontiers in Plant Science, 2017, 8, 951.	3.6	58
26	Thiamineâ€induced priming against rootâ€knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 2016, 17, 614-624.	4.2	54
27	Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots. Annals of Botany, 2017, 119, 885-899.	2.9	54
28	Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event. BMC Evolutionary Biology, 2008, 8, 305.	3.2	50
29	Expressed sequence tags of the peanut pod nematode Ditylenchus africanus: The first transcriptome analysis of an Anguinid nematode. Molecular and Biochemical Parasitology, 2009, 167, 32-40.	1.1	50
30	Strigolactones enhance rootâ€knot nematode (<i>Meloidogyne graminicola</i>) infection in rice by antagonizing the jasmonate pathway. New Phytologist, 2019, 224, 454-465.	7.3	47
31	Spatial genetic structuring of baobab (<i>Adansonia digitata</i> , Malvaceae) in the traditional agroforestry systems of West Africa. American Journal of Botany, 2009, 96, 950-957.	1.7	45
32	Systemic defense activation by COS-OGA in rice against root-knot nematodes depends on stimulation of the phenylpropanoid pathway. Plant Physiology and Biochemistry, 2019, 142, 202-210.	5.8	45
33	Species relationships in the genus <i>Vasconcellea</i> (Caricaceae) based on molecular and morphological evidence. American Journal of Botany, 2005, 92, 1033-1044.	1.7	44
34	Genetic fingerprinting using AFLP cannot distinguish traditionally classified baobab morphotypes. Agroforestry Systems, 2009, 75, 157-165.	2.0	44
35	Natural variation in fruit characteristics, seed germination and seedling growth of Adansonia digitata L. in Benin. New Forests, 2011, 41, 113-125.	1.7	44
36	Genomeâ€wide DNA hypomethylation shapes nematode patternâ€triggered immunity in plants. New Phytologist, 2020, 227, 545-558.	7.3	44

#	Article	IF	Citations
37	A Phytochemical Perspective on Plant Defense Against Nematodes. Frontiers in Plant Science, 2020, 11, 602079.	3.6	43
38	Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing. Journal of Experimental Botany, 2012, 63, 2141-2157.	4.8	41
39	Rootâ€knot nematodes induce gall formation by recruiting developmental pathways of postâ€embryonic organogenesis and regeneration to promote transient pluripotency. New Phytologist, 2020, 227, 200-215.	7.3	41
40	How far a protected area contributes to conserve habitat species composition and population structure of endangered African tree species (Benin, West Africa). Ecological Complexity, 2013, 13, 60-68.	2.9	40
41	Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data. Molecular Phylogenetics and Evolution, 2005, 37, 442-459.	2.7	39
42	Evidence of Natural Hybridization and Introgression between Vasconcellea Species (Caricaceae) from Southern Ecuador Revealed by Chloroplast, Mitochondrial and Nuclear DNA Markers. Annals of Botany, 2006, 97, 793-805.	2.9	38
43	A family of GHF5 endoâ€1,4â€betaâ€glucanases in the migratory plantâ€parasitic nematode <i>Radopholus similis</i> . Plant Pathology, 2008, 57, 581-590.	2.4	36
44	Quantitative morphological descriptors confirm traditionally classified morphotypes of Tamarindus indica L. fruits. Genetic Resources and Crop Evolution, 2011, 58, 299-309.	1.6	36
45	Nematode Resistant GM Crops in Industrialised and Developing Countries. , 2011, , 517-541.		35
46	The role of thionins in rice defence against root pathogens. Molecular Plant Pathology, 2015, 16, 870-881.	4.2	33
47	The phenylpropanoid pathway inhibitor piperonylic acid induces broadâ€spectrum pest and disease resistance in plants. Plant, Cell and Environment, 2021, 44, 3122-3139.	5.7	31
48	Below-Ground Attack by the Root Knot Nematode <i>Meloidogyne graminicola</i> Predisposes Rice to Blast Disease. Molecular Plant-Microbe Interactions, 2017, 30, 255-266.	2.6	28
49	Trace analysis of multi-class phytohormones in Oryza sativa using different scan modes in high-resolution Orbitrap mass spectrometry: method validation, concentration levels, and screening in multiple accessions. Analytical and Bioanalytical Chemistry, 2018, 410, 4527-4539.	3.7	28
50	Trichoderma-Inoculated Miscanthus Straw Can Replace Peat in Strawberry Cultivation, with Beneficial Effects on Disease Control. Frontiers in Plant Science, 2018, 9, 213.	3.6	28
51	Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice. Journal of Experimental Botany, 2020, 71, 4271-4284.	4.8	26
52	Purification and characterization of the cysteine proteinases in the latex of Vasconcellea spp FEBS Journal, 2007, 274, 451-462.	4.7	23
53	Analysis of the transcriptome of <i><scp>H</scp>irschmanniella oryzae</i> to explore potential survival strategies and host–nematode interactions. Molecular Plant Pathology, 2014, 15, 352-363.	4.2	23
54	Analysis of fungal endophytes associated with rice roots from irrigated and upland ecosystems in Kenya. Plant and Soil, 2016, 405, 371-380.	3.7	23

#	Article	IF	Citations
55	<i>AtCDKA;1</i> silencing in <i>Arabidopsis thaliana</i> reduces reproduction of sedentary plantâ€parasitic nematodes. Plant Biotechnology Journal, 2008, 6, 749-757.	8.3	22
56	Vasconcellea., 2011,, 213-249.		22
57	Mechanisms of resistance in the rice cultivar Manikpukha to the rice stem nematode <i>Ditylenchus angustus</i> . Molecular Plant Pathology, 2018, 19, 1391-1402.	4.2	22
58	Ascorbate Oxidase Induces Systemic Resistance in Sugar Beet Against Cyst Nematode Heterodera schachtii. Frontiers in Plant Science, 2020, 11, 591715.	3.6	22
59	Molecular insights into the compatible and incompatible interactions between sugar beet and the beet cyst nematode. BMC Plant Biology, 2020, 20, 483.	3.6	21
60	The Role of Pseudo-Endoglucanases in the Evolution of Nematode Cell Wall-Modifying Proteins. Journal of Molecular Evolution, 2010, 70, 441-452.	1.8	20
61	Evaluation of Metabarcoding Primers for Analysis of Soil Nematode Communities. Diversity, 2020, 12, 388.	1.7	20
62	Chitin in Strawberry Cultivation: Foliar Growth and Defense Response Promotion, but Reduced Fruit Yield and Disease Resistance by Nutrient Imbalances. Molecular Plant-Microbe Interactions, 2021, 34, 227-239.	2.6	19
63	Cross-species microsatellite amplification in Vasconcellea and related genera and their use in germplasm classification. Genome, 2006, 49, 786-798.	2.0	18
64	Analysis of ITS of the rDNA to infer phylogenetic relationships among Vietnamese Citrus accessions. Genetic Resources and Crop Evolution, 2010, 57, 183-192.	1.6	16
65	The Use of PTI-Marker Genes to Identify Novel Compounds that Establish Induced Resistance in Rice. International Journal of Molecular Sciences, 2020, 21, 317.	4.1	16
66	Vasconcellea for Papaya Improvement. , 2014, , 47-79.		15
67	Jasmonate-Induced Defense Mechanisms in the Belowground Antagonistic Interaction Between Pythium arrhenomanes and Meloidogyne graminicola in Rice. Frontiers in Plant Science, 2019, 10, 1515.	3.6	15
68	Benzoxazinoids selectively affect maize root-associated nematode taxa. Journal of Experimental Botany, 2021, 72, 3835-3845.	4.8	15
69	Short-term effects of cadmium on leaf growth and nutrient transport in rice plants. Plant Science, 2021, 313, 111054.	3.6	15
70	Maternal inheritance of cytoplasmic organelles in intergeneric hybrids of Carica papaya L. and Vasconcellea spp. (Caricaceae Dumort., Brassicales). Euphytica, 2005, 143, 161-168.	1.2	14
71	Genomeâ€wide shifts in histone modifications at early stage of rice infection with <i>Meloidogyne graminicola</i> . Molecular Plant Pathology, 2021, 22, 440-455.	4.2	14
72	Systemic Suppression of the Shoot Metabolism upon Rice Root Nematode Infection. PLoS ONE, 2014, 9, e106858.	2.5	13

#	Article	IF	CITATIONS
73	Dehydroascorbate induces plant resistance in rice against rootâ€knot nematode ⟨i⟩Meloidogyne graminicola⟨/i⟩. Molecular Plant Pathology, 2022, 23, 1303-1319.	4.2	13
74	Transcriptional silencing of RNAi constructs against nematodeÂgenes in Arabidopsis. Nematology, 2013, 15, 519-528.	0.6	12
75	An insight into critical endocycle genes for plant-parasitic nematode feeding sites establishment. Plant Signaling and Behavior, 2013, 8, e24223.	2.4	12
76	Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode <i>Hirschmanniella oryzae</i> , increase host susceptibility by manipulating secondary metabolite content of rice. Molecular Plant Pathology, 2020, 21, 1634-1646.	4.2	12
77	Non-coding RNAs in the interaction between rice and Meloidogyne graminicola. BMC Genomics, 2021, 22, 560.	2.8	12
78	Rice diterpenoid phytoalexins are involved in defence against parasitic nematodes and shape rhizosphere nematode communities. New Phytologist, 2022, 235, 1231-1245.	7.3	12
79	Phytohormones selectively affect plant parasitic nematodes associated with Arabidopsis roots. New Phytologist, 2021, 232, 1272-1285.	7.3	11
80	Biochar-Enhanced Resistance to Botrytis cinerea in Strawberry Fruits (But Not Leaves) Is Associated With Changes in the Rhizosphere Microbiome. Frontiers in Plant Science, 2021, 12, 700479.	3.6	11
81	Interactions between the oomycete Pythium arrhenomanes and the rice root-knot nematode Meloidogyne graminicola in aerobic Asian rice varieties. Rice, 2016, 9, 36.	4.0	9
82	Selection of miRNA reference genes for plant defence studies in rice (Oryza sativa). Planta, 2019, 250, 2101-2110.	3.2	9
83	Plant defense priming in the field: a review. , 2021, , 87-124.		9
84	Plant parasitic cyst nematodes redirect host indole metabolism via NADPH oxidaseâ€mediated ROS to promote infection. New Phytologist, 2021, 232, 318-331.	7.3	9
85	Genetic disruption of <i>Arabidopsis</i> secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion. ISME Journal, 2022, 16, 2230-2241.	9.8	9
86	Recent Advances in Understanding Plant–Nematode Interactions in Monocots. Advances in Botanical Research, 2015, 73, 189-219.	1.1	8
87	Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 2021, 12, 713870.	3.6	8
88	Genetic diversity, population structure and taxonomy of Calopteryx splendens (Odonata:) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf 50 142 Td
89	Genetic Evidence of the Contribution of Ethnic Migrations to the Propagation and Persistence of the Rare and Declining Scrambling Shrub Caesalpinia bonduc L. Human Ecology, 2012, 40, 117-128.	1.4	7
90	A high-resolution melt (HRM) assay to characterize CYP51 haplotypes of the wheat pathogen Mycosphaerella graminicola. Crop Protection, 2015, 71, 12-18.	2.1	7

Tina Kyndt

#	Article	IF	CITATION
91	Sensitivity towards DMI fungicides and haplotypic diversity of their CYP51 target in the Mycosphaerella graminicola population of Flanders. Journal of Plant Diseases and Protection, 2014, 121, 156-163.	2.9	6
92	Identification of Bangladeshi rice varieties resistant to ufra disease caused by the nematode Ditylenchus angustus. Crop Protection, 2016, 79, 162-169.	2.1	6
93	Beneficial worm allies warn plants of parasite attack belowground and reduce aboveground herbivore preference and performance. Molecular Ecology, 2021, , .	3.9	5
94	Isolation and characterization of microsatellite loci in the highland papaya Vasconcellea�×heilbornii V. Badillo (Caricaceae). Molecular Ecology Notes, 2005, 5, 590-592.	1.7	4
95	Spatiotemporal expression profile of novel and known small RNAs throughout rice plant development focussing on seed tissues. BMC Genomics, 2022, 23, 44.	2.8	4
96	Cucurbitaceae COld Peeling Extracts (CCOPEs) Protect Plants From Root-Knot Nematode Infections Through Induced Resistance and Nematicidal Effects. Frontiers in Plant Science, 2021, 12, 785699.	3.6	4