Olivier Sordet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/491713/publications.pdf Version: 2024-02-01

OLIVIED SODDET

#	Article	IF	CITATIONS
1	RNase H2, mutated in Aicardiâ€Goutières syndrome, resolves co-transcriptional R-loops to prevent DNA breaks and inflammation. Nature Communications, 2022, 13, .	12.8	26
2	Transcription-associated DNA breaks and cancer: A matter of DNA topology. International Review of Cell and Molecular Biology, 2021, 364, 195-240.	3.2	5
3	Transcription-dependent DNA double-strand breaks and human disease. Molecular and Cellular Oncology, 2020, 7, 1691905.	0.7	7
4	The RND1 Small GTPase: Main Functions and Emerging Role in Oncogenesis. International Journal of Molecular Sciences, 2019, 20, 3612.	4.1	12
5	A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective toward the Cellular RHOB GTP-Bound Conformation. Cell Chemical Biology, 2019, 26, 1544-1558.e6.	5.2	32
6	Dual Processing of R-Loops and Topoisomerase I Induces Transcription-Dependent DNA Double-Strand Breaks. Cell Reports, 2019, 28, 3167-3181.e6.	6.4	108
7	DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 816-825.	7.1	217
8	PARP-1-dependent RND1 transcription induced by topoisomerase I cleavage complexes confers cellular resistance to camptothecin. Cell Death and Disease, 2018, 9, 931.	6.3	7
9	DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Research, 2016, 44, 1161-1178.	14.5	75
10	Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters. PLoS ONE, 2016, 11, e0147053.	2.5	41
11	The c-Jun/RHOB/AKT pathway confers resistance of <i>BRAF</i> -mutant melanoma cells to MAPK inhibitors. Oncotarget, 2015, 6, 15250-15264.	1.8	29
12	RhoB Promotes Cancer Initiation by Protecting Keratinocytes from UVB-Induced Apoptosis but Limits Tumor Aggressiveness. Journal of Investigative Dermatology, 2014, 134, 203-212.	0.7	28
13	RhoB Promotes γH2AX Dephosphorylation and DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2014, 34, 3144-3155.	2.3	37
14	Topoisomerases and Apoptosis. Cancer Drug Discovery and Development, 2012, , 409-435.	0.4	0
15	Î ³ -H2AX Detection in Peripheral Blood Lymphocytes, Splenocytes, Bone Marrow, Xenografts, and Skin. Methods in Molecular Biology, 2011, 682, 249-270.	0.9	66
16	Characterization of novel antisense HIF-1α transcripts in human cancers. Cell Cycle, 2011, 10, 3189-3197.	2.6	92
17	Inhibition of Histone Deacetylase in Cancer Cells Slows Down Replication Forks, Activates Dormant Origins, and Induces DNA Damage. Cancer Research, 2010, 70, 4470-4480.	0.9	135
18	DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle, 2010, 9, 274-278.	2.6	47

OLIVIER SORDET

#	Article	IF	CITATIONS
19	Death Receptor-Induced Activation of the Chk2- and Histone H2AX-Associated DNA Damage Response Pathways. Molecular and Cellular Biology, 2009, 29, 68-82.	2.3	99
20	Ataxia telangiectasia mutated activation by transcription―and topoisomerase lâ€induced DNA doubleâ€strand breaks. EMBO Reports, 2009, 10, 887-893.	4.5	208
21	Hyperphosphorylation of RNA Polymerase II in Response to Topoisomerase I Cleavage Complexes and Its Association with Transcription- and BRCA1-dependent Degradation of Topoisomerase I. Journal of Molecular Biology, 2008, 381, 540-549.	4.2	55
22	Homologous Recombination Is the Principal Pathway for the Repair of DNA Damage Induced by Tirapazamine in Mammalian Cells. Cancer Research, 2008, 68, 257-265.	0.9	60
23	Topoisomerase I Requirement for Death Receptor-induced Apoptotic Nuclear Fission. Journal of Biological Chemistry, 2008, 283, 23200-23208.	3.4	14
24	Von Hippel-Lindau–Coupled and Transcription-Coupled Nucleotide Excision Repair–Dependent Degradation of RNA Polymerase II in Response to Trabectedin. Clinical Cancer Research, 2008, 14, 6449-6455.	7.0	41
25	Novel E-ring camptothecin keto analogues (S38809 and S39625) are stable, potent, and selective topoisomerase I inhibitors without being substrates of drug efflux transporters. Molecular Cancer Therapeutics, 2007, 6, 3229-3238.	4.1	48
26	Topoisomerase I Poisons and Apoptotic Topoisomerase I-DNA Complexes. , 2007, , 383-406.		0
27	Hereditary ataxia SCAN1 cells are defective for the repair of transcription-dependent topoisomerase I cleavage complexes. DNA Repair, 2006, 5, 1489-1494.	2.8	86
28	Repair of Topoisomerase lâ€Mediated DNA Damage. Progress in Molecular Biology and Translational Science, 2006, 81, 179-229.	1.9	247
29	Topoisomerase II and tubulin inhibitors both induce the formation of apoptotic topoisomerase I cleavage complexes. Molecular Cancer Therapeutics, 2006, 5, 3139-3144.	4.1	28
30	Defective Mre11-dependent Activation of Chk2 by Ataxia Telangiectasia Mutated in Colorectal Carcinoma Cells in Response to Replication-dependent DNA Double Strand Breaks. Journal of Biological Chemistry, 2006, 281, 30814-30823.	3.4	98
31	Targeting Chk2 Kinase: Molecular Interaction Maps and Therapeutic Rationale. Current Pharmaceutical Design, 2005, 11, 2855-2572.	1.9	71
32	A Novel Polypyrimidine Antitumor Agent FdUMP[10] Induces Thymineless Death with Topoisomerase I-DNA Complexes. Cancer Research, 2005, 65, 4844-4851.	0.9	47
33	Translocation of the inhibitor of apoptosis protein c-IAP1 from the nucleus to the Golgi in hematopoietic cells undergoing differentiation: a nuclear export signal-mediated event. Blood, 2004, 104, 2035-2043.	1.4	55
34	Topoisomerase I-DNA Complexes Contribute to Arsenic Trioxide-induced Apoptosis. Journal of Biological Chemistry, 2004, 279, 33968-33975.	3.4	41
35	Apoptotic Topoisomerase I-DNA Complexes Induced by Staurosporine-mediated Oxygen Radicals. Journal of Biological Chemistry, 2004, 279, 50499-50504.	3.4	62
36	Apoptotic Topoisomerase I-DNA Complexes Induced by Oxygen Radicals and Mitochondrial Dysfunction. Cell Cycle, 2004, 3, 1093-1095.	2.6	47

OLIVIER SORDET

#	Article	IF	CITATIONS
37	Topoisomerase I-Mediated Inhibition of Hypoxia-Inducible Factor 1. Cancer Research, 2004, 64, 1475-1482.	0.9	303
38	Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene, 2004, 23, 2934-2949.	5.9	524
39	Hypoxia induces caspase-9 and caspase-3 activation without neuronal death in gerbil brains. European Journal of Neuroscience, 2004, 20, 937-946.	2.6	25
40	Apoptotic topoisomerase I-DNA complexes induced by oxygen radicals and mitochondrial dysfunction. Cell Cycle, 2004, 3, 1095-7.	2.6	21
41	Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 532, 173-203.	1.0	263
42	Apoptosis Induced by Topoisomerase Inhibitors. Anti-Cancer Agents in Medicinal Chemistry, 2003, 3, 271-290.	7.0	176
43	CELL DEATH PATHWAYS AS TARGETS FOR ANTICANCER DRUGS. , 2002, , 55-76.		3
44	Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood, 2002, 100, 4446-4453.	1.4	287
45	Involvement of caspase-2 long isoform in Fas-mediated cell death of human leukemic cells. Blood, 2001, 97, 1835-1844.	1.4	57
46	Mitochondria-targeting drugs arsenic trioxide and lonidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis. Blood, 2001, 97, 3931-3940.	1.4	79
47	Selective inhibition of apoptosis by TPA-induced differentiation of U937 leukemic cells. Cell Death and Differentiation, 1999, 6, 351-361.	11.2	49
48	p27Kip1 induces drug resistance by preventing apoptosis upstream of cytochrome c release and procaspase-3 activation in leukemic cells. Oncogene, 1999, 18, 1411-1418.	5.9	86
49	Caspase-induced proteolysis of the cyclin-dependent kinase inhibitor p27Kip1 mediates its anti-apoptotic activity. Oncogene, 1999, 18, 4839-4847.	5.9	84
50	Glutathione is implied in the control of 7â€ketocholesterolâ€induced apoptosis, which is associated with radical oxygen species production. FASEB Journal, 1998, 12, 1651-1663.	0.5	192
51	BCR-ABL Delays Apoptosis Upstream of Procaspase-3 Activation. Blood, 1998, 91, 2415-2422.	1.4	4
52	A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective Towards the Cellular RHOB GTP-Bound Conformation. SSRN Electronic Journal, 0, , .	0.4	1
53	A Targeted Protein Degradation Cell-Based Screening for Intracellular Nanobodies to Assess the Functions of RHOB GTP-Bound Conformation. SSRN Electronic Journal, 0, , .	0.4	0