
Yanqing Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4916697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overexpression of GSTP1 promotes colorectal cancer cell proliferation, invasion and metastasis by upregulating STAT3. Advances in Clinical and Experimental Medicine, 2022, 31, 139-149.	1.4	8
2	MIF/SCL3A2 depletion inhibits the proliferation and metastasis of colorectal cancer cells via the AKT/CSKâ€3β pathway and cell iron death. Journal of Cellular and Molecular Medicine, 2022, 26, 3410-3422.	3.6	13
3	The inhibition of colorectal cancer growth by the natural product macrocarpal I. Free Radical Biology and Medicine, 2021, 162, 383-391.	2.9	4
4	PRMT5 regulates colorectal cancer cell growth and EMT via EGFR/Akt/GSK3β signaling cascades. Aging, 2021, 13, 4468-4481.	3.1	24
5	Circulating plasma exosomal miRNA profiles serve as potential metastasis‑related biomarkers for hepatocellular carcinoma. Oncology Letters, 2021, 21, 168.	1.8	13
6	A newly identified small molecular compound acts as a protein kinase inhibitor to suppress metastasis of colorectal cancer. Bioorganic Chemistry, 2021, 107, 104625.	4.1	5
7	Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein and Cell, 2021, 12, 240-260.	11.0	57
8	CMTM6 expression in M2 macrophages is a potential predictor of PD-1/PD-L1 inhibitor response in colorectal cancer. Cancer Immunology, Immunotherapy, 2021, 70, 3235-3248.	4.2	23
9	Inhibition of CCL7 derived from Mo-MDSCs prevents metastatic progression from latency in colorectal cancer. Cell Death and Disease, 2021, 12, 484.	6.3	20
10	Hybrid Al-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nature Communications, 2021, 12, 3541.	12.8	36
11	Analysis of Immune Landscape Reveals Prognostic Significance of Cytotoxic CD4+ T Cells in the Central Region of pMMR CRC. Frontiers in Oncology, 2021, 11, 724232.	2.8	6
12	Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC. Journal of Experimental and Clinical Cancer Research, 2021, 40, 304.	8.6	42
13	CCT8 recovers WTp53-suppressed cell cycle evolution and EMT to promote colorectal cancer progression. Oncogenesis, 2021, 10, 84.	4.9	16
14	KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis. Oncogene, 2020, 39, 249-261.	5.9	43
15	CD24 and PRAME Are Novel Grading and Prognostic Indicators for Pineal Parenchymal Tumors of Intermediate Differentiation. American Journal of Surgical Pathology, 2020, 44, 11-20.	3.7	14
16	VCAM1 Promotes Tumor Cell Invasion and Metastasis by Inducing EMT and Transendothelial Migration in Colorectal Cancer. Frontiers in Oncology, 2020, 10, 1066.	2.8	56
17	Chinese herbal medicine promote tissue differentiation in colorectal cancer by activating HSD11B2. Archives of Biochemistry and Biophysics, 2020, 695, 108644.	3.0	8
18	Calcium Channel Blocker Nifedipine Suppresses Colorectal Cancer Progression and Immune Escape by Preventing NFAT2 Nuclear Translocation. Cell Reports, 2020, 33, 108327.	6.4	32

YANQING DING

#	Article	IF	CITATIONS
19	CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. Journal of Experimental and Clinical Cancer Research, 2020, 39, 168.	8.6	36
20	FBX8 promotes metastatic dormancy of colorectal cancer in liver. Cell Death and Disease, 2020, 11, 622.	6.3	10
21	Extended transcriptome analysis reveals genome-wide IncRNA-mediated epigenetic dysregulation in colorectal cancer. Computational and Structural Biotechnology Journal, 2020, 18, 3507-3517.	4.1	2
22	Regulatory Mechanism of ITGBL1 in the Metastasis of Colorectal Cancer. Frontiers in Oncology, 2020, 10, 259.	2.8	9
23	Downregulation of Siah1 promotes colorectal cancer cell proliferation and migration by regulating AKT and YAP ubiquitylation and proteasome degradation. Cancer Cell International, 2020, 20, 50.	4.1	17
24	Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Molecular Cancer, 2020, 19, 20.	19.2	131
25	Pathological evidence for residual SARS-CoV-2 in pulmonary tissues of a ready-for-discharge patient. Cell Research, 2020, 30, 541-543.	12.0	176
26	TUSC3 induces drug resistance and cellular stemness via Hedgehog signaling pathway in colorectal cancer. Carcinogenesis, 2020, 41, 1755-1766.	2.8	12
27	Atractyloside targets cancer-associated fibroblasts and inhibits the metastasis of colon cancer. Annals of Translational Medicine, 2020, 8, 1443-1443.	1.7	5
28	Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death and Differentiation, 2019, 26, 2447-2463.	11.2	182
29	Prevalence and distribution of human papillomavirus genotypes among women with highâ€grade squamous intraepithelial lesion and invasive cervical cancer in Ganzhou, China. Journal of Clinical Laboratory Analysis, 2019, 33, e22708.	2.1	8
30	Jade family PHD finger 3 (JADE3) increases cancer stem cell-like properties and tumorigenicity in colon cancer. Cancer Letters, 2018, 428, 1-11.	7.2	9
31	COPS5 and LASP1 synergistically interact to downregulate 14â€3â€3σ expression and promote colorectal cancer progression via activating PI3K/AKT pathway. International Journal of Cancer, 2018, 142, 1853-1864.	5.1	40
32	Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nature Communications, 2018, 9, 5395.	12.8	613
33	MiR-452 promotes an aggressive colorectal cancer phenotype by regulating a Wnt/β-catenin positive feedback loop. Journal of Experimental and Clinical Cancer Research, 2018, 37, 238.	8.6	34
34	WTX inhibits gastric cancer migration through the reversal of epithelial‑mesenchymal transition. Oncology Letters, 2018, 16, 4970-4976.	1.8	0
35	FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA. Cancer Letters, 2018, 439, 78-90.	7.2	44
36	FOXF1 Induces Epithelial-Mesenchymal Transition in Colorectal Cancer Metastasis by Transcriptionally Activating SNAI1. Neoplasia, 2018, 20, 996-1007.	5.3	25

Yanqing Ding

#	Article	IF	CITATIONS
37	STX2 promotes colorectal cancer metastasis through a positive feedback loop that activates the NF-κB pathway. Cell Death and Disease, 2018, 9, 664.	6.3	25
38	TNK2 as a key drug target for the treatment of metastatic colorectal cancer. International Journal of Biological Macromolecules, 2018, 119, 48-52.	7.5	13
39	Significance and prognostic role of human epidermal growth factor receptor 2 and RAB1A expression in gastric cancer. Oncology Letters, 2018, 15, 5185-5192.	1.8	17
40	Screening of Differentiation-Specific Molecular Biomarkers for Colon Cancer. Cellular Physiology and Biochemistry, 2018, 46, 2543-2550.	1.6	13
41	Analysis of metastasis associated signal regulatory network in colorectal cancer. Biochemical and Biophysical Research Communications, 2018, 501, 113-118.	2.1	14
42	Construction of key signal regulatory network in metastatic colorectal cancer. Oncotarget, 2018, 9, 6086-6094.	1.8	13
43	Oncogenic function of TUSC3 in non-small cell lung cancer is associated with Hedgehog signalling pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1749-1760.	3.8	20
44	LASP2 suppresses colorectal cancer progression through JNK/p38 MAPK pathway meditated epithelial-mesenchymal transition. Cell Communication and Signaling, 2017, 15, 21.	6.5	35
45	Long noncoding RNA CRNDE stabilized by hnRNPUL2 accelerates cell proliferation and migration in colorectal carcinoma via activating Ras/MAPK signaling pathways. Cell Death and Disease, 2017, 8, e2862-e2862.	6.3	78
46	MIER3 suppresses colorectal cancer progression by down-regulating Sp1, inhibiting epithelial-mesenchymal transition. Scientific Reports, 2017, 7, 11000.	3.3	21
47	MicroRNA-105 is involved in TNF-α-related tumor microenvironment enhanced colorectal cancer progression. Cell Death and Disease, 2017, 8, 3213.	6.3	78
48	LIM kinase 1 interacts with myosin-9 and alpha-actinin-4 and promotes colorectal cancer progression. British Journal of Cancer, 2017, 117, 563-571.	6.4	57
49	Screening of Tumor Suppressor Genes in Metastatic Colorectal Cancer. BioMed Research International, 2017, 2017, 1-7.	1.9	11
50	Study on molecular mechanism of ANOS1 promoting development of colorectal cancer. PLoS ONE, 2017, 12, e0182964.	2.5	8
51	Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer. BMC Bioinformatics, 2017, 18, 388.	2.6	35
52	TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/β-catenin and MAPK signalling. Journal of Pathology, 2016, 239, 60-71.	4.5	80
53	LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGFÎ ² /Smad signaling. Scientific Reports, 2016, 6, 26112.	3.3	56
54	Loss of the 14-3-3σ is essential for LASP1-mediated colorectal cancer progression via activating PI3K/AKT signaling pathway. Scientific Reports, 2016, 6, 25631.	3.3	26

YANQING DING

#	Article	IF	CITATIONS
55	MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer. Journal of Experimental and Clinical Cancer Research, 2016, 35, 21.	8.6	82
56	MicroRNA-187, a downstream effector of TGFβ pathway, suppresses Smad-mediated epithelial–mesenchymal transition in colorectal cancer. Cancer Letters, 2016, 373, 203-213.	7.2	67
57	Periostin expression in intra-tumoral stromal cells is prognostic and predictive for colorectal carcinoma <i>via</i> carcinoma <i>via</i> carcinoma <i>via</i>	1.8	41
58	Long non-coding RNA <i>FEZF1-AS1</i> facilitates cell proliferation and migration in colorectal carcinoma. Oncotarget, 2016, 7, 11271-11283.	1.8	98
59	Rapid recurrence and bilateral lungs, multiple bone metastasis of malignant solitary fibrous tumor of the right occipital lobe: report of a case and review. Diagnostic Pathology, 2015, 10, 91.	2.0	10
60	SEMA3F prevents metastasis of colorectal cancer by PI3K–AKTâ€dependent downâ€regulation of the ASCL2–CXCR4 axis. Journal of Pathology, 2015, 236, 467-478.	4.5	34
61	The SOX17/miR-371-5p/SOX2 axis inhibits EMT, stem cell properties and metastasis in colorectal cancer. Oncotarget, 2015, 6, 9099-9112.	1.8	57
62	MicroRNA-34a targets FMNL2 and E2F5 and suppresses the progression of colorectal cancer. Experimental and Molecular Pathology, 2015, 99, 173-179.	2.1	41
63	Biochemical Hormone Parameters in Seminal and Blood Plasma Samples Correlate With Histopathologic Properties of Testicular Biopsy in Azoospermic Patients. Urology, 2015, 85, 1074-1078.	1.0	10
64	Significance of FBX8 in progression of gastric cancer. Experimental and Molecular Pathology, 2015, 98, 360-366.	2.1	12
65	Hypermethylation of FOXD3 suppresses cell proliferation, invasion and metastasis in hepatocellular carcinoma. Experimental and Molecular Pathology, 2015, 99, 374-382.	2.1	13
66	Activation of Slit2-Robo1 signaling promotes liver fibrosis. Journal of Hepatology, 2015, 63, 1413-1420.	3.7	69
67	Radiation-induced microrna-622 causes radioresistance in colorectal cancer cells by down-regulating Rb. Oncotarget, 2015, 6, 15984-15994.	1.8	53
68	The positive feedback between Snail and DAB2IP regulates EMT, invasion and metastasis in colorectal cancer. Oncotarget, 2015, 6, 27427-27439.	1.8	33
69	Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms. Oncology Letters, 2014, 7, 1895-1902.	1.8	143
70	LIM and SH3 Protein 1 Induces TGFβ-Mediated Epithelial–Mesenchymal Transition in Human Colorectal Cancer by Regulating S100A4 Expression. Clinical Cancer Research, 2014, 20, 5835-5847.	7.0	101
71	MiR-141 Suppresses the Migration and Invasion of HCC Cells by Targeting Tiam1. PLoS ONE, 2014, 9, e88393.	2.5	78
72	Involvement of the CREB5 regulatory network in colorectal cancer metastasis. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2014, 36, 679-84.	0.2	17

YANQING DING

#	Article	IF	CITATIONS
73	Inhibitory effect of celecoxib combined with cisplatin on growth of human tongue squamous carcinoma Tca8113 cell xenograft tumor. Chinese-German Journal of Clinical Oncology, 2010, 9, 564-568.	0.1	Ο
74	Role of Monocytes and Macrophages in Pathogenesis of SARS. , 2007, , .		2
75	Organ distribution of severe acute respiratory syndrome(SARS) associated coronavirus(SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. Journal of Pathology, 2004, 203, 622-630.	4.5	894
76	The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. Journal of Pathology, 2003, 200, 282-289.	4.5	664