Marek Marzec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4914695/publications.pdf

Version: 2024-02-01

361413 377865 1,302 38 20 34 citations h-index g-index papers 40 40 40 1558 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TILLING - a shortcut in functional genomics. Journal of Applied Genetics, 2011, 52, 371-390.	1.9	184
2	Induced Variations in Brassinosteroid Genes Define Barley Height and Sturdiness, and Expand the Green Revolution Genetic Toolkit Â. Plant Physiology, 2014, 166, 1912-1927.	4.8	121
3	HorTILLUSâ€"A Rich and Renewable Source of Induced Mutations for Forward/Reverse Genetics and Pre-breeding Programs in Barley (Hordeum vulgare L.). Frontiers in Plant Science, 2018, 9, 216.	3.6	71
4	Strigolactones as Part of the Plant Defence System. Trends in Plant Science, 2016, 21, 900-903.	8.8	68
5	The Role of Strigolactones in Nutrient-Stress Responses in Plants. International Journal of Molecular Sciences, 2013, 14, 9286-9304.	4.1	67
6	In Silico Analysis of the Genes Encoding Proteins that Are Involved in the Biosynthesis of the RMS/MAX/D Pathway Revealed New Roles of Strigolactones in Plants. International Journal of Molecular Sciences, 2015, 16, 6757-6782.	4.1	57
7	Identification and functional analysis of the <i><scp>HvD14</scp></i> gene involved in strigolactone signaling in <i>Hordeum vulgare</i> . Physiologia Plantarum, 2016, 158, 341-355.	5.2	54
8	Strigolactones and Gibberellins: A New Couple in the Phytohormone World?. Trends in Plant Science, 2017, 22, 813-815.	8.8	50
9	Asymmetric growth of root epidermal cells is related to the differentiation of root hair cells in Hordeum vulgare (L.). Journal of Experimental Botany, 2013, 64, 5145-5155.	4.8	48
10	Mutation in HvCBP20 (Cap Binding Protein 20) Adapts Barley to Drought Stress at Phenotypic and Transcriptomic Levels. Frontiers in Plant Science, 2017, 8, 942.	3.6	48
11	Prime Editing: A New Way for Genome Editing. Trends in Cell Biology, 2020, 30, 257-259.	7.9	45
12	Root Hair Development in the Grasses: What We Already Know and What We Still Need to Know. Plant Physiology, 2015, 168, 407-414.	4.8	41
13	Perception and Signaling of Strigolactones. Frontiers in Plant Science, 2016, 7, 1260.	3.6	39
14	Regulation of Root Development and Architecture by Strigolactones under Optimal and Nutrient Deficiency Conditions. International Journal of Molecular Sciences, 2018, 19, 1887.	4.1	38
15	Arabinogalactan proteins are involved in root hair development in barley. Journal of Experimental Botany, 2015, 66, 1245-1257.	4.8	34
16	The evolutionary context of root epidermis cell patterning in grasses (Poaceae). Plant Signaling and Behavior, 2014, 9, e27972.	2.4	33
17	Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans. Frontiers in Microbiology, 2017, 8, 1777.	3.5	30
18	Prime Editing: Game Changer for Modifying Plant Genomes. Trends in Plant Science, 2020, 25, 722-724.	8.8	30

#	Article	IF	CITATIONS
19	Binding or Hydrolysis? How Does the Strigolactone Receptor Work?. Trends in Plant Science, 2019, 24, 571-574.	8.8	28
20	Barley strigolactone signalling mutant <i>hvd14.d</i> reveals the role of strigolactones in abscisic acidâ€dependent response to drought. Plant, Cell and Environment, 2020, 43, 2239-2253.	5.7	25
21	Importance of symplasmic communication in cell differentiation. Plant Signaling and Behavior, 2014, 9, e27931.	2.4	21
22	Key Hormonal Components Regulate Agronomically Important Traits in Barley. International Journal of Molecular Sciences, 2018, 19, 795.	4.1	21
23	Diverse Roles of MAX1 Homologues in Rice. Genes, 2020, 11, 1348.	2.4	17
24	Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. Plant Science, 2020, 291, 110321.	3.6	15
25	The barley EST DNA Replication and Repair Database (bEST-DRRD) as a tool for the identification of the genes involved in DNA replication and repair. BMC Plant Biology, 2012, 12, 88.	3.6	14
26	Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation in Arxula adeninivorans by stabilization of production. Microbial Cell Factories, 2017, 16, 144.	4.0	13
27	Targeted Base Editing Systems Are Available for Plants. Trends in Plant Science, 2018, 23, 955-957.	8.8	11
28	Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC Plant Biology, 2021, 21, 22.	3.6	11
29	Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development. Plant Biology, 2014, 16, 476-484.	3.8	9
30	More precise, more universal and more specific – the next generation of RNAâ€guided endonucleases for genome editing. FEBS Journal, 2019, 286, 4657-4660.	4.7	9
31	New insights into the function of mammalian Argonaute2. PLoS Genetics, 2020, 16, e1009058.	3.5	8
32	MicroRNA: a new signal in plant-to-plant communication. Trends in Plant Science, 2022, 27, 418-419.	8.8	7
33	Whole Exome Sequencing-Based Identification of a Novel Gene Involved in Root Hair Development in Barley (Hordeum vulgare L.). International Journal of Molecular Sciences, 2021, 22, 13411.	4.1	3
34	Size does matter: piRNA and miRNA targeting. Trends in Biochemical Sciences, 2022, 47, 287-288.	7. 5	3
35	Strigolactone Signaling in Plants. , 2017, , .		1
36	Preparation of Barley Roots for Histological, Structural, and Immunolocalization Studies Using Light and Electron Microscopy. Methods in Molecular Biology, 2019, 1900, 153-166.	0.9	1

#	Article	IF	CITATIONS
37	Uncovering the Mechanical Code of DNA Using †Loop-seq'. Trends in Genetics, 2021, 37, 494-495.	6.7	1
38	Characterization of Catechol-1,2-Dioxygenase (Acdo1p) From Blastobotrys raffinosifermentans and Investigation of Its Role in the Catabolism of Aromatic Compounds. Frontiers in Microbiology, 2022, 13, .	3.5	1