Marc Swidergall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4914671/publications.pdf Version: 2024-02-01

MADE SWIDERCALL

#	Article	IF	CITATIONS
1	EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans. Nature Microbiology, 2018, 3, 53-61.	13.3	136
2	Interplay between Candida albicans and the Antimicrobial Peptide Armory. Eukaryotic Cell, 2014, 13, 950-957.	3.4	112
3	Oropharyngeal Candidiasis: Fungal Invasion and Epithelial Cell Responses. PLoS Pathogens, 2017, 13, e1006056.	4.7	87
4	Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science, 2021, 371, .	12.6	84
5	Msb2 Shedding Protects Candida albicans against Antimicrobial Peptides. PLoS Pathogens, 2012, 8, e1002501.	4.7	76
6	Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion. Nature Microbiology, 2017, 2, 16211.	13.3	75
7	Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. Journal of Infectious Diseases, 2019, 220, 1477-1488.	4.0	72
8	GRP78 and Integrins Play Different Roles in Host Cell Invasion during Mucormycosis. MBio, 2020, 11, .	4.1	69
9	Mucoricin is a ricin-like toxin that is critical for the pathogenesis of mucormycosis. Nature Microbiology, 2021, 6, 313-326.	13.3	53
10	Innate Immunity to Mucosal Candida Infections. Journal of Fungi (Basel, Switzerland), 2017, 3, 60.	3.5	51
11	The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis. MBio, 2017, 8, .	4.1	50
12	EphA2 Is a Neutrophil Receptor for Candida albicans that Stimulates Antifungal Activity during Oropharyngeal Infection. Cell Reports, 2019, 28, 423-433.e5.	6.4	47
13	Candida albicans Mucin Msb2 Is a Broad-Range Protectant against Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2013, 57, 3917-3922.	3.2	46
14	Inhibition of EGFR Signaling Protects from Mucormycosis. MBio, 2018, 9, .	4.1	45
15	Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors. PLoS Pathogens, 2021, 17, e1009221.	4.7	45
16	The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection. PLoS Pathogens, 2018, 14, e1007056.	4.7	43
17	Selection of Candida albicans trisomy during oropharyngeal infection results in a commensal-like phenotype. PLoS Genetics, 2019, 15, e1008137.	3.5	43
18	Candida albicans at Host Barrier Sites: Pattern Recognition Receptors and Beyond. Pathogens, 2019, 8, 40.	2.8	38

MARC SWIDERGALL

#	Article	IF	CITATIONS
19	Mucosal IgA Prevents Commensal Candida albicans Dysbiosis in the Oral Cavity. Frontiers in Immunology, 2020, 11, 555363.	4.8	35
20	Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Nature Communications, 2021, 12, 3899.	12.8	31
21	Candida albicans White-Opaque Switching Influences Virulence but Not Mating during Oropharyngeal Candidiasis. Infection and Immunity, 2018, 86, .	2.2	29
22	<i>Candida albicans</i> responds to glycostructure damage by Ace2â€mediated feedback regulation of Cek1 signaling. Molecular Microbiology, 2016, 102, 827-849.	2.5	23
23	Control of β-glucan exposure by the endo-1,3-glucanase Eng1 in Candida albicans modulates virulence. PLoS Pathogens, 2022, 18, e1010192.	4.7	19
24	Signaling Domains of Mucin Msb2 in Candida albicans. Eukaryotic Cell, 2015, 14, 359-370.	3.4	18
25	Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunology, 2022, 15, 829-836.	6.0	17
26	The Globular C1q Receptor Is Required for Epidermal Growth Factor Receptor Signaling during Candida albicans Infection. MBio, 2021, 12, e0271621.	4.1	13
27	Interleukin-26 activates macrophages and facilitates killing of Mycobacterium tuberculosis. Scientific Reports, 2020, 10, 17178.	3.3	12
28	Response to Comments on "Aberrant type 1 immunity drives susceptibility to mucosal fungal infections― Science, 2021, 373, eabi8835.	12.6	5
29	Serum bridging molecules drive candidal invasion of human but not mouse endothelial cells. PLoS Pathogens, 2022, 18, e1010681.	4.7	3
30	AMPlified Defense: Antimicrobial Peptides During Candida albicans Infection. , 2017, , 185-203.		0
31	EphA2 is a Neutrophil Receptor for Candida Albicans that Stimulates Antifungal Activity During Oropharyngeal Infection. SSRN Electronic Journal, 0, , .	0.4	0