
Cayetano Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4913555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nature Genetics, 2005, 37, 1125-1129.	21.4	406
2	polo encodes a protein kinase homolog required for mitosis in Drosophila Genes and Development, 1991, 5, 2153-2165.	5.9	371
3	Functionally Unequal Centrosomes Drive Spindle Orientation in Asymmetrically Dividing Drosophila Neural Stem Cells. Developmental Cell, 2007, 12, 467-474.	7.0	262
4	Ectopic Expression of Germline Genes Drives Malignant Brain Tumor Growth in <i>Drosophila</i> . Science, 2010, 330, 1824-1827.	12.6	252
5	Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nature Reviews Cancer, 2013, 13, 172-183.	28.4	246
6	Drosophila neuroblasts retain the daughter centrosome. Nature Communications, 2011, 2, 243.	12.8	171
7	Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nature Reviews Genetics, 2007, 8, 462-472.	16.3	169
8	Centrosome Dysfunction in Drosophila Neural Stem Cells Causes Tumors that Are Not Due to Genome Instability. Current Biology, 2008, 18, 1209-1214.	3.9	154
9	Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO Journal, 2000, 19, 3932-3944.	7.8	151
10	The Drosophila Gene abnormal spindle Encodes a Novel Microtubule-associated Protein That Associates with the Polar Regions of the Mitotic Spindle. Journal of Cell Biology, 1997, 137, 881-890.	5.2	142
11	Asterless Is a Centriolar Protein Required for Centrosome Function and Embryo Development in Drosophila. Current Biology, 2007, 17, 1735-1745.	3.9	142
12	Transcripts of one of two Drosophila cyclin genes become localized in pole cells during embryogenesis. Nature, 1989, 338, 337-340.	27.8	132
13	Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nature Genetics, 2009, 41, 1076-1082.	21.4	112
14	Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO Journal, 2000, 19, 1252-1262.	7.8	111
15	Centrobin controls mother–daughter centriole asymmetry in Drosophila neuroblasts. Nature Cell Biology, 2013, 15, 241-248.	10.3	111
16	Regulation of the G1-S transition in postembryonic neuronal precursors by axon ingrowth. Nature, 1992, 355, 253-255.	27.8	102
17	Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma, 1995, 103, 676-684.	2.2	101
18	Essential role for gamma -tubulin in the acentriolar female meiotic spindle of Drosophila. EMBO Journal, 1997, 16, 1809-1819.	7.8	92

#	Article	IF	CITATIONS
19	The interphase microtubule aster is a determinant of asymmetric division orientation in <i>Drosophila</i> neuroblasts. Journal of Cell Biology, 2010, 188, 693-706.	5.2	91
20	Spermatocyte cytokinesis requires rapid membrane addition mediated by ARF6 on central spindle recycling endosomes. Development (Cambridge), 2007, 134, 4437-4447.	2.5	90
21	Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. EMBO Journal, 2001, 20, 2878-2884.	7.8	85
22	Contribution of Noncentrosomal Microtubules to Spindle Assembly in Drosophila Spermatocytes. PLoS Biology, 2004, 2, e8.	5.6	84
23	Cell type-specific gene expression in the Drosophila melanogaster male accessory gland. Mechanisms of Development, 1992, 38, 33-40.	1.7	83
24	Computer-aided design of a PDZ domain to recognize new target sequences. Nature Structural Biology, 2002, 9, 621-7.	9.7	83
25	Drosophila asymmetric division, polarity and cancer. Oncogene, 2008, 27, 6994-7002.	5.9	73
26	Patterns of Cell Division and Expression of Asymmetric Cell Fate Determinants in Postembryonic Neuroblast Lineages of Drosophila. Developmental Biology, 2001, 230, 125-138.	2.0	68
27	An Ana2/Ctp/Mud Complex Regulates Spindle Orientation in Drosophila Neuroblasts. Developmental Cell, 2011, 21, 520-533.	7.0	61
28	The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages. ELife, 2014, 3, e01906.	6.0	60
29	Organized microtubule arrays in Î ³ -tubulin-depleted Drosophila spermatocytes. Current Biology, 2001, 11, 1788-1793.	3.9	58
30	Visualizing the spindle checkpoint inDrosophilaspermatocytes. EMBO Reports, 2000, 1, 65-70.	4.5	55
31	Biased segregation of DNA and centrosomes — moving together or drifting apart?. Nature Reviews Molecular Cell Biology, 2009, 10, 804-810.	37.0	52
32	The Centrosome. Scientific American, 1993, 268, 62-68.	1.0	51
33	Connecting Cancer to the Asymmetric Division of Stem Cells. Cell, 2006, 124, 1121-1123.	28.9	49
34	Spindle alignment is achieved without rotation after the first cell cycle in <i>Drosophila</i> embryonic neuroblasts. Development (Cambridge), 2009, 136, 3393-3397.	2.5	48
35	The translational relevance of <i>Drosophila</i> in drug discovery. EMBO Reports, 2016, 17, 471-472.	4.5	46
36	The spindle is required for the process of sister chromatid separation in Drosophila neuroblasts. Experimental Cell Research, 1991, 192, 10-15.	2.6	45

#	Article	IF	CITATIONS
37	Cdc37 is essential for chromosome segregation and cytokinesis in higher eukaryotes. EMBO Journal, 2002, 21, 5364-5374.	7.8	45
38	Studying tumor growth in Drosophila using the tissue allograft method. Nature Protocols, 2015, 10, 1525-1534.	12.0	43
39	Relationship between chromosome content and nuclear diameter in early spermatids of <i>Drosophila melanogaster</i> . Genetical Research, 1989, 54, 205-212.	0.9	41
40	Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics. BMC Cancer, 2012, 12, 38.	2.6	41
41	Molecular analysis of ribosomal DNA from the aphid <i>Amphorophora idaei</i> and an associated fungal organism. Insect Molecular Biology, 1994, 3, 183-189.	2.0	36
42	Localized transfection on arrays of magnetic beads coated with PCR products. Nature Methods, 2005, 2, 113-118.	19.0	36
43	Drosophila dd4 mutants reveal that γTuRC is required to maintain juxtaposed half spindles in spermatocytes. Journal of Cell Science, 2003, 116, 929-941.	2.0	33
44	When fate follows age: unequal centrosomes in asymmetric cell division. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130466.	4.0	33
45	On the inscrutable role of Inscuteable: structural basis and functional implications for the competitive binding of NuMA and Inscuteable to LGN. Open Biology, 2012, 2, 120102.	3.6	31
46	Interactions between mgr , asp , and polo : asp function modulated by polo and needed to maintain the poles of monopolar and bipolar spindles. Chromosoma, 1998, 107, 452-460.	2.2	28
47	Neural stem cells: the need for a proper orientation. Current Opinion in Genetics and Development, 2010, 20, 438-442.	3.3	28
48	<i>Drosophila</i> Mgr, a Prefoldin subunit cooperating with von Hippel Lindau to regulate tubulin stability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5729-5734.	7.1	27
49	Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila. Current Biology, 2015, 25, 2319-2324.	3.9	26
50	Â-Tubulin function during female germ-cell development and oogenesis in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10263-10268.	7.1	25
51	Structure and Non-Structure of Centrosomal Proteins. PLoS ONE, 2013, 8, e62633.	2.5	25
52	Protein traps: using intracellular localization for cloning. Trends in Cell Biology, 2000, 10, 162-165.	7.9	24
53	Centrosome function during stem cell division: the devil is in the details. Current Opinion in Cell Biology, 2008, 20, 694-698.	5.4	24
54	Arl2- and Msps-dependent microtubule growth governs asymmetric division. Journal of Cell Biology, 2016, 212, 661-676.	5.2	24

#	Article	IF	CITATIONS
55	Interplay between the Transcription Factor Zif and aPKC Regulates Neuroblast Polarity and Self-Renewal. Developmental Cell, 2010, 19, 778-785.	7.0	23
56	Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation. Scientific Reports, 2016, 6, 23735.	3.3	21
57	Miranda, a protein involved in neuroblast asymmetric division, is associated with embryonic centrosomes of Drosophila melanogaster. Biology of the Cell, 2002, 94, 1-13.	2.0	19
58	Mutations in New Cell Cycle Genes That Fail to Complement a Multiply Mutant Third Chromosome of Drosophila. Genetics, 1996, 144, 1097-1111.	2.9	17
59	Dominant-negative mutant dynein allows spontaneous centrosome assembly, uncouples chromosome and centrosome cycles. Current Biology, 2001, 11, 136-140.	3.9	16
60	Centrobin is essential for C-tubule assembly and flagellum development in Drosophila melanogaster spermatogenesis. Journal of Cell Biology, 2018, 217, 2365-2372.	5.2	16
61	Time-lapse recording of centrosomes and other organelles in Drosophila neuroblasts. Methods in Cell Biology, 2015, 129, 301-315.	1.1	15
62	Towards the genetic dissection of mitosis inDrosophila. BioEssays, 1987, 7, 204-210.	2.5	13
63	Time-Lapse Imaging of Male Meiosis by Phase-Contrast and Fluorescence Microscopy. , 2004, 247, 77-88.		13
64	Synergism between altered cortical polarity and the PI3K/TOR pathway in the suppression of tumour growth. EMBO Reports, 2012, 13, 157-162.	4.5	12
65	An <i>in vivo</i> genetic screen in <i>Drosophila</i> identifies the orthologue of human cancer/testis gene <i>SPO11</i> among a network of targets to inhibit <i>lethal(3)malignant brain tumour</i> growth. Open Biology, 2017, 7, 170156.	3.6	12
66	Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma, 1995, 103, 676-684.	2.2	12
67	Localized transfection with magnetic beads coated with PCR products and other nucleic acids. Nature Protocols, 2006, 1, 526-531.	12.0	10
68	Cell Cycle Genes of Drosophila. Advances in Genetics, 1994, 31, 79-138.	1.8	9
69	16 Methods in Drosophila Cell Cycle Biology. Current Topics in Developmental Biology, 1997, 36, 279-291.	2.2	9
70	Time‣apse Imaging of Embryonic Neural Stem Cell Division in <i>Drosophila</i> by Twoâ€Photon Microscopy. Current Protocols in Stem Cell Biology, 2010, 13, Unit1H.2.	3.0	8
71	Structure and microtubule-nucleation activity of isolated Drosophila embryo centrosomes characterized by whole mount scanning and transmission electron microscopy. Histochemistry and Cell Biology, 2005, 124, 325-334.	1.7	7
72	The histone code reader PHD finger protein 7 controls sex-linked disparities in gene expression and malignancy in <i>Drosophila</i> . Science Advances, 2019, 5, eaaw7965.	10.3	7

#	Article	IF	CITATIONS
73	Cell Division: The Place and Time of Cytokinesis. Current Biology, 2003, 13, R363-R365.	3.9	5
74	Centrosomes in asymmetric cell division. Current Opinion in Structural Biology, 2021, 66, 178-182.	5.7	5
75	<i>Drosophila</i> Larval Brain Neoplasms Present Tumour-Type Dependent Genome Instability. G3: Genes, Genomes, Genetics, 2018, 8, 1205-1214.	1.8	4
76	Structures of the germline-specific Deadhead and thioredoxin T proteins from <i>Drosophila melanogaster</i> reveal unique features among thioredoxins. IUCrJ, 2021, 8, 281-294.	2.2	4
77	Aurora-A in Cell Fate Control. Science Signaling, 2002, 2002, pe48-pe48.	3.6	3
78	A last-minute decision. Nature, 2015, 528, 196-197.	27.8	3
79	Cyclical Changes in the Subcellular Distribution of Proteins Essential for Mitosis during Embryogenesis in Drosophila. Cold Spring Harbor Symposia on Quantitative Biology, 1991, 56, 709-717.	1.1	1
80	Below the Convergence. Current Biology, 2009, 19, R313-R314.	3.9	0
81	Cayetano González: Mothers, daughters, stemness, and cancer. Journal of Cell Biology, 2015, 208, 254-255.	5.2	0
82	Quantitative differences, qualitative outcomes. ELife, 2014, 3, .	6.0	0