Preecha Yupapin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4912631/publications.pdf

Version: 2024-02-01

236925 2,405 131 25 citations h-index papers

42 g-index 137 719 citing authors

265206

137 all docs

137 docs citations

times ranked

#	Article	IF	CITATIONS
1	Triâ€core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microwave and Optical Technology Letters, 2019, 61, 847-852.	1.4	96
2	Distributed Feedback Laser (DFB) for Signal Power Amplitude Level Improvement in Long Spectral Band. Journal of Optical Communications, 2024, 44, s125-s130.	4.7	94
3	Average Power Model of Optical Raman Amplifiers Based on Frequency Spacing and Amplifier Section Stage Optimization. Journal of Optical Communications, 2023, 44, 19-27.	4.7	84
4	Analytical Model Analysis of Reflection/Transmission Characteristics of Long-Period Fiber Bragg Grating (LPFBG) by Using Coupled Mode Theory. Journal of Optical Communications, 2021, .	4.7	84
5	Spatial Continuous Wave Laser and Spatiotemporal VCSEL for High-Speed Long Haul Optical Wireless Communication Channels. Journal of Optical Communications, 2023, 44, 43-51.	4.7	83
6	The Engagement of Hybrid Ultra High Space Division Multiplexing with Maximum Time Division Multiplexing Techniques for High-Speed Single-Mode Fiber Cable Systems. Journal of Optical Communications, 2022, 43, 219-223.	4.7	77
7	BaTiO3-Graphene-Affinity Layer–Based Surface Plasmon Resonance (SPR) Biosensor for Pseudomonas Bacterial Detection. Plasmonics, 2020, 15, 1221-1229.	3.4	76
8	High-Speed Light Sources in High-Speed Optical Passive Local Area Communication Networks. Journal of Optical Communications, 2023, 44, 61-67.	4.7	75
9	Mathematical Model Analysis of Dispersion and Loss in Photonic Crystal Fibers. Journal of Optical Communications, 2023, 44, 139-144.	4.7	74
10	Nonlinear Effects with Semiconductor Optical Amplifiers. Journal of Optical Communications, 2023, 44, 11-17.	4.7	74
11	High-Speed Transmission Circuits Signaling in Optical Communication Systems. Journal of Optical Communications, 2022, .	4.7	73
12	Comparative Simulation Study of Multi Stage Hybrid All Optical Fiber Amplifiers in Optical Communications. Journal of Optical Communications, 2021, .	4.7	73
13	Technical Specifications of the Submarine Fiber Optic Channel Bandwidth/Capacity in Optical Fiber Transmission Systems. Journal of Optical Communications, 2020, .	4.7	72
14	Pump Laser Automatic Signal Control for Erbium-Doped Fiber Amplifier Gain, Noise Figure, and Output Spectral Power. Journal of Optical Communications, 2021, .	4.7	70
15	Basic Functions of Fiber Bragg Grating Effects on the Optical Fiber Systems Performance Efficiency. Journal of Optical Communications, 2022, 43, 633-639.	4.7	69
16	Interaction between Optical Sources and Optical Modulators for High-Speed Optical Communication Networks. Journal of Optical Communications, 2022, 43, 625-632.	4.7	65
17	Effects of Order Super Gaussian Pulses on the Performance of High Data Rate Optical Fiber Channel in the Presence of Self Phase Modulation. Journal of Optical Communications, 2023, 44, 117-123.	4.7	62
18	Enhanced Hand-Oriented Activity Recognition Based on Smartwatch Sensor Data Using LSTMs. Symmetry, 2020, 12, 1570.	2.2	60

#	Article	IF	Citations
19	Introduction to Photonics: Principles and the Most Recent Applications of Microstructures. Micromachines, 2018, 9, 452.	2.9	54
20	Modeling of highly sensitive surface plasmon resonance (SPR) sensor for urine glucose detection. Optical and Quantum Electronics, 2020, 52, 1.	3.3	54
21	Micro-Current Source Generated by a WGM of Light Within a Stacked Silicon-Graphene-Au Waveguide. IEEE Photonics Technology Letters, 2017, 29, 1768-1771.	2.5	49
22	Analytical and simulation results of a triple micro whispering gallery mode probe system for a 3D blood flow rate sensor. Applied Optics, 2016, 55, 9504.	2.1	45
23	ResNet-SE: Channel Attention-Based Deep Residual Network for Complex Activity Recognition Using Wrist-Worn Wearable Sensors. IEEE Access, 2022, 10, 51142-51154.	4.2	44
24	Modeling and Analysis of a Microresonating Biosensor for Detection of Salmonella Bacteria in Human Blood. Sensors, 2014, 14, 12885-12899.	3.8	37
25	Ultra-High-Sensitive Sensor Based on Surface Plasmon Resonance Structure Having Si and Graphene Layers for the Detection of Chikungunya Virus. Plasmonics, 2022, 17, 1315-1321.	3.4	30
26	Microring Switching Control Using Plasmonic Ring Resonator Circuits for Super-Channel Use. Plasmonics, 2019, 14, 1669-1677.	3.4	27
27	Design of all-optical universal logic gates using mode-conversion in single silicon microring resonator. Journal of Nanophotonics, 2019, 13, 1.	1.0	24
28	Nano force sensing using symmetric double stage micro resonator. Measurement: Journal of the International Measurement Confederation, 2014, 58, 215-220.	5.0	23
29	Detection of <i>Salmonella bacterium</i> in drinking water using microring resonator. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 315-321.	2.8	23
30	Coherent light squeezing states within a modified microring system. Results in Physics, 2018, 9, 211-214.	4.1	21
31	LiFi cross-connection node model using whispering gallery mode of light in a microring resonator. Microsystem Technologies, 2018, 24, 4833-4838.	2.0	21
32	Microring stereo sensor model using Kerr–Vernier effect for bio-cell sensor and communication. Nano Communication Networks, 2018, 17, 30-35.	2.9	20
33	Gold nanoparticle trapping and delivery for therapeutic applications. International Journal of Nanomedicine, 2012, 7, 11.	6.7	18
34	Molecular buffer using a PANDA ring resonator for drug delivery use. International Journal of Nanomedicine, 2011, 6, 575.	6.7	17
35	Design of Mach-Zehnder interferometer and ring resonator for biochemical sensing. Photonic Sensors, 2015, 5, 12-18.	5.0	16
36	Rabi oscillation generation in the microring resonator system with double-series ring resonators. Optoelectronics Letters, 2015, 11, 342-347.	0.8	16

#	Article	IF	CITATIONS
37	Electron driven mobility model by light on the stacked metal–dielectric interfaces. Microwave and Optical Technology Letters, 2017, 59, 1704-1709.	1.4	16
38	Theorizing how the brain encodes consciousness based on negentropic entanglement. Journal of Integrative Neuroscience, 2019, 18, 1-10.	1.7	16
39	Effectiveness of Taguchi method for the optimization of narrowband optical filters based on grating waveguides. Microsystem Technologies, 2019, 25, 789-795.	2.0	15
40	Plasmonic Micro-Antenna Characteristics Using Gold Grating Embedded in a Panda-Ring Circuit. Plasmonics, 2020, 15, 279-285.	3.4	15
41	All-optical notch filters for ultra-wideband chaotic communications. European Physical Journal Plus, 2018, 133, 1.	2.6	14
42	Ultra-fast electro-optic switching control using a soliton pulse within a modified add-drop multiplexer. Microsystem Technologies, 2018, 24, 3777-3782.	2.0	13
43	Electron Cloud Spectroscopy Using Micro-Ring Fabry–Perot Sensor Embedded Gold Grating. IEEE Sensors Journal, 2020, 20, 10564-10571.	4.7	13
44	Investigation of As ₂ S ₃ -borosilicate chalcogenide glass-based dispersion-engineered photonic crystal fibre for broadband supercontinuum generation in the mid-IR region. Journal of Modern Optics, 2020, 67, 920-926.	1.3	13
45	Planning a sports training program using Adaptive Particle Swarm Optimization with emphasis on physiological constraints. BMC Research Notes, 2018, 11, 9.	1.4	12
46	An elementary optical logic circuit for quantum computing: a review. Optical and Quantum Electronics, 2019, 51, 1.	3.3	12
47	Fast and slow light generated by surface plasmon wave and gold grating coupling effects. Indian Journal of Physics, 2018, 92, 789-798.	1.8	11
48	Microring Distributed Sensors Using Space-Time Function Control. IEEE Sensors Journal, 2020, 20, 799-805.	4.7	11
49	Optical configuration of an N â^¶â€‰2 ^N reversible decoder using a LiNbO ₃ -based Mach–Zehnder interferometer. Applied Optics, 2021, 60, 4544.	1.8	11
50	Analytical microring stereo system using coupled mode theory and application. Applied Optics, 2019, 58, 8167.	1.8	11
51	Embedded nanomicro syringe on chip for molecular therapy. International Journal of Nanomedicine, 2011, 6, 2925.	6.7	10
52	Naked-eye 3D imaging model using the embedded micro-conjugate mirrors within the medical micro-needle device. Microsystem Technologies, 2018, 24, 2695-2699.	2.0	10
53	Butterfly-like phase shift: a novel gauge for critical coupling of add–drop resonator. Journal of Theoretical and Applied Physics, 2018, 12, 127-134.	1.4	9
54	LiFi up-downlink conversion node model generated by inline successive optical pumping. Microsystem Technologies, 2019, 25, 945-950.	2.0	9

#	Article	IF	CITATIONS
55	Silicon microring resonator waveguide-based graphene photodetector. Microsystem Technologies, 2019, 25, 319-328.	2.0	9
56	Electroâ€optic conversion circuit incorporating a fiber optic loop for light fidelity upâ€down link use. Microwave and Optical Technology Letters, 2019, 61, 526-531.	1.4	9
57	GHz frequency filtering source using hexagonal metamaterial splitting ring resonators. Microwave and Optical Technology Letters, 2017, 59, 1337-1340.	1.4	8
58	Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals. PLoS ONE, 2017, 12, e0183677.	2.5	8
59	Plasmonic op-amp circuit model using the inline successive microring pumping technique. Microsystem Technologies, 2018, 24, 3689-3695.	2.0	8
60	Ultrafast all-optical ALU operation using a soliton control within the cascaded InGaAsP/InP microring circuits. Microsystem Technologies, 2019, 25, 431-440.	2.0	8
61	Microplasma Source Circuit Using Microring Space–Time Distortion Control. IEEE Transactions on Plasma Science, 2020, 48, 3600-3605.	1.3	8
62	Spin-wave generation using MZI embedded plasmonic antennas for quantum communications. Optical and Quantum Electronics, 2020, 52, 1.	3.3	8
63	Proposal for Alzheimer's diagnosis using molecular buffer and bus network. International Journal of Nanomedicine, 2011, 6, 1209.	6.7	7
64	Blood cleaner on-chip design for artificial human kidney manipulation. International Journal of Nanomedicine, 2011, 6, 957.	6.7	7
65	Brain sensor and communication model using plasmonic microring antenna network. Optical and Quantum Electronics, 2019, 51, 1.	3.3	7
66	On-chip polariton generation using an embedded nanograting microring circuit. Results in Physics, 2018, 10, 913-916.	4.1	6
67	Molecular orbitals of delocalized electron clouds in neuronal domains. BioSystems, 2019, 183, 103982.	2.0	6
68	Analytical and numerical demonstration of phase characteristics on two solitons under the influence of third-order dispersion. Optical and Quantum Electronics, 2019, 51, 1.	3.3	6
69	3Dâ€quantum interferometer using silicon microringâ€embedded gold grating circuit. Microscopy Research and Technique, 2020, 83, 1217-1224.	2.2	6
70	Optimum light transmission via microring resonator under a lossyâ€coupler critical coupling condition. Microwave and Optical Technology Letters, 2021, 63, 653-661.	1.4	6
71	Integrating Metamaterial Antenna Node and LiFi for Privacy Preserving Intelligent COVID-19 Hospital Patient Management. Cognitive Computation, 2021, , 1-14.	5.2	6
72	Nano-particles for Cosmetic Use: Particle Sizing, Cytotoxicity Test, and Facial Gesture Monitoring Model. Journal of Cosmetology & Trichology, 2016, 2, .	0.1	5

#	Article	IF	CITATIONS
73	In-situ 3D micro-sensor model using embedded plasmonic island for biosensors. Microsystem Technologies, 2018, 24, 3631-3635.	2.0	5
74	Characteristics of microring circuit using plasmonic island driven electron mobility. Microsystem Technologies, 2018, 24, 3573-3577.	2.0	5
75	Micro-optical probe model using integrated triple microring resonators for vertical depth identification. Microsystem Technologies, 2018, 24, 3513-3519.	2.0	5
76	Characteristics of an on-chip polariton successively filtered circuit. Results in Physics, 2018, 11, 410-413.	4.1	5
77	Mode-locked self-pumping and squeezing photons model in a nonlinear micro-ring resonator. Optical and Quantum Electronics, 2018, 50, 1.	3.3	5
78	Manual control of optical tweezer switching for particle trapping and injection. Micro and Nano Letters, 2018, 13, 911-914.	1.3	5
79	Nano-capacitor-like model using light trapping in plasmonic island embedded microring system. Results in Physics, 2018, 10, 727-730.	4.1	5
80	Bifurcation behaviors generated by Pandaâ€ring control circuit. Microwave and Optical Technology Letters, 2019, 61, 1783-1787.	1.4	5
81	Array waveguide grating model for nanoparticle sensor applications. Microsystem Technologies, 2019, 25, 2259-2265.	2.0	5
82	Modeling of a superconducting sensor with microring-embedded gold-island space–time control. Journal of Computational Electronics, 2020, 19, 1678-1684.	2.5	5
83	Bandenna for RF energy harvesting and flexible electronics. Microsystem Technologies, 2021, 27, 1857-1861.	2.0	5
84	Design and modeling of double Panda-microring resonator as multi-band optical filter. Nano Communication Networks, 2021, 29, 100352.	2.9	5
85	High-density quantum bits generation using microring plasmonic antenna. Optical and Quantum Electronics, 2020, 52, 1.	3.3	5
86	Exploring a reversible NOR from a $4\hat{A}-\hat{A}4$ modified Fredkin gate and its optical mapping using a LiNbO3-based MZI. Journal of Computational Electronics, 2022, 21, 304-318.	2.5	5
87	Multi-access drug delivery network and stability. International Journal of Nanomedicine, 2011, 6, 1757.	6.7	4
88	Nerve communication model by bio-cells and optical dipole coupling effects. Artificial Cells, Nanomedicine and Biotechnology, 2013, 41, 368-375.	2.8	4
89	A simple humidity sensor utilizing air-gap as sensing part of the Mach–Zehnder interferometer. Optical and Quantum Electronics, 2017, 49, 1.	3.3	4
90	Dual-wavelength transmission system using double micro-resonator system for EMI healthcare applications. Microsystem Technologies, 2019, 25, 1185-1193.	2.0	4

#	Article	IF	Citations
91	Two-pump optical parametric amplification in the S-band using a tellurite microstructured optical fiber. Indian Journal of Physics, 2019, 93, 101-105.	1.8	4
92	Micro-metamaterial antenna characteristics using microring embedded silver bars. Microsystem Technologies, 2020, 26, 3927-3933.	2.0	4
93	Fullâ€time slot teleportation using unified spaceâ€time function control. Microwave and Optical Technology Letters, 2020, 62, 2183-2188.	1.4	4
94	Realizing THz RFID Using Silicon Chip Space-Time Control Circuit. Silicon, 2021, 13, 3725-3732.	3.3	4
95	Molecular network topology and reliability for multipurpose diagnosis. International Journal of Nanomedicine, 2011, 6, 2385.	6.7	3
96	Channel resolution enhancement through scalability of nano/micro-scale thickness and width of SU-8 polymer based optical channels using UV lithography. Microsystem Technologies, 2018, 24, 1673-1681.	2.0	3
97	Multifunction interferometry using the electron mobility visibility and mean free path relationship. Microscopy Research and Technique, 2018, 81, 872-877.	2.2	3
98	Hibernation Model Based on Polariton Successive Filtering. The National Academy of Sciences, India, 2020, 43, 207-211.	1.3	3
99	Double Vision Model Using Space-Time Function Control within Silicon Microring System. Silicon, 2020, 12, 2635-2640.	3.3	3
100	Electron density transport using microring circuit for dual-mode power transmission. Optical and Quantum Electronics, 2020, 52, $1.$	3.3	3
101	Realizing unique bifurcation model in a cascaded microring feedback circuit. Optical and Quantum Electronics, 2020, 52, 1.	3.3	3
102	Analytical Treatment and Modeling of Integrated Ring Resonator Device by Z-Transform Method for Signals Amplification. Journal of Computational and Theoretical Nanoscience, 2015, 12, 2253-2258.	0.4	2
103	Micropropulsion generation model and simulation by WGM acceleration within a <scp>P</scp> anda ring resonator system. Microwave and Optical Technology Letters, 2017, 59, 377-380.	1.4	2
104	Multiâ€optical carrier generation using a microring resonator to enhance the number of serviceable channels in radio over free space optic. Microwave and Optical Technology Letters, 2017, 59, 2038-2044.	1.4	2
105	Electron Mobility Sensor Scheme-Based on a Mach–Zehnder Interferometer Approach. IEEE Photonics Technology Letters, 2018, 30, 887-890.	2.5	2
106	Broadband photon squeezing control using microring embedded gold grating for LiFi-quantum link. SN Applied Sciences, 2019, 1, 1.	2.9	2
107	Modified duobinary modulation of optical signals generated by siliconâ€based microring resonator. Microwave and Optical Technology Letters, 2019, 61, 1661-1668.	1.4	2
108	Electron Cloud Density Generated by Microring-Embedded Nano-grating System. Plasmonics, 2020, 15, 543-549.	3.4	2

#	Article	IF	CITATIONS
109	Electron cloud spin generated by microring spaceâ€time control circuit for 3D quantum printing. Microwave and Optical Technology Letters, 2020, 62, 3702-3708.	1.4	2
110	A Theoretical Study on the Influence of Carrier Generation on Drain-Source Current of Graphene Nanoscroll Transistors. Plasmonics, 2019, 14, 1329-1334.	3.4	1
111	Mindfulness Model Using Polariton Oscillation in Plasmonic Circuit for Human Performance Management. Axioms, 2020, 9, 76.	1.9	1
112	High-Density Wavelength Multiplexing Model for THz-EMI Transmission. Wireless Personal Communications, 2020, 113, 1225-1239.	2.7	1
113	Correction to "Microring Distributed Sensors Using Space-Time Function Control―[Jan 20 799-805]. IEEE Sensors Journal, 2020, 20, 3956-3956.	4.7	1
114	Q-switched tunable fiber laser utilizing silver nanoparticles deposited onto PVA film as saturable absorber. Indian Journal of Physics, 2021, 95, 141-145.	1.8	1
115	Microring Plasmonic Circuit Characteristics Using Space–Time Modulation Control. Plasmonics, 2021, 16, 533-539.	3.4	1
116	Temperature Sensing with Fibre Bragg Grating and No-Core Fibre. The National Academy of Sciences, India, 2021, 44, 405-407.	1.3	1
117	Ultra-High Capacity FSK Transmission Using Silicon Microring Embedded Gold Grating Circuits. Silicon, 2021, 13, 1295-1301.	3.3	1
118	Micro-supercapacitor characteristics using a micro-ring space-time control circuit. Journal of Computational Electronics, 2021, 20, 928-933.	2.5	1
119	Distributed MEMS Sensors Using Plasmonic Antenna Array Embedded Sagnac Interferometer. Plasmonics, $0,1$	3.4	1
120	Highâ€density WGM probes generated by a ChG ring resonator for highâ€density 3D imaging and applications. Microwave and Optical Technology Letters, 2018, 60, 2689-2693.	1.4	0
121	Ultrafast chaotic switching and monitoring using plasmonic addâ€drop multiplexer. Microwave and Optical Technology Letters, 2018, 60, 2719-2724.	1.4	0
122	A microring conjugate mirror design and simulation for nakedâ€eye 3D imaging application. Microwave and Optical Technology Letters, 2018, 60, 1653-1660.	1.4	0
123	On comparison of the temperature sensitivity of SU-8-based triple-arm MZI against straight rib optical waveguides patterned on silicon wafer. Indian Journal of Physics, 2019, 93, 385-391.	1.8	0
124	Thermoâ€electroâ€optic energy conversion using plasmonic island embedded silicon microring circuit. Microwave and Optical Technology Letters, 2020, 62, 3407-3411.	1.4	0
125	Dual-parameter sensor using low-index polymer-overlaid micro-resonator based on dispersion relation. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	0
126	Hall effect sensors using polarized electron cloud spin orientation control. Microscopy Research and Technique, 2021, 84, 563-570.	2.2	0

#	Article	IF	CITATIONS
127	Microring Plasmonic Transducer Circuits for Up-Downstream Communications. Plasmonics, 2021, 16, 123-129.	3.4	О
128	Design, Measurements, and Analysis of Enhanced Bandwidth UWB. International Journal of Ambient Computing and Intelligence, 2021, 12, 140-158.	1.1	0
129	Plasmonic Antenna Embedded Chalcogenide MZI Circuit for Ultra-high Density Up- and Downlink Transmission. Plasmonics, 2021, 16, 947-955.	3.4	O
130	3D Fringe Pattern Coding and Recognition Using Plasmonic Sensing Circuit. Plasmonics, 0, , 1.	3.4	0
131	Optical black hole characteristics using microring spaceâ€time distortion circuit. Microwave and Optical Technology Letters, 2022, 64, 1317-1323.	1.4	0