
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4912608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microporous Multiresonant Plasmonic Meshes by Hierarchical Micro–Nanoimprinting for Bioâ€interfaced SERS Imaging and Nonlinear Nanoâ€Optics. Small, 2022, 18, e2106887.	10.0	13
2	Broadband Nanoscale Surfaceâ€Enhanced Raman Spectroscopy by Multiresonant Nanolaminate Plasmonic Nanocavities on Vertical Nanopillars. Advanced Functional Materials, 2022, 32, .	14.9	14
3	Nanoimprinted conducting nanopillar arrays made of MWCNT/polymer nanocomposites: a study by electrochemical impedance spectroscopy. Nanoscale Advances, 2021, 3, 556-566.	4.6	4
4	A digital SERS sensing platform using 3D nanolaminate plasmonic crystals coupled with Au nanoparticles for accurate quantitative detection of dopamine. Nanoscale, 2021, 13, 17340-17349.	5.6	19
5	Nano-optoelectrodes Integrated with Flexible Multifunctional Fiber Probes by High-Throughput Scalable Fabrication. ACS Applied Materials & Interfaces, 2021, 13, 9156-9165.	8.0	13
6	Twoâ€īrier Nanolaminate Plasmonic Crystals for Broadband Multiresonant Light Concentration with Spatial Mode Overlap. Advanced Optical Materials, 2021, 9, 2001908.	7.3	6
7	Plasmonically Calibrated Label-Free Surface-Enhanced Raman Spectroscopy for Improved Multivariate Analysis of Living Cells in Cancer Subtyping and Drug Testing. Analytical Chemistry, 2021, 93, 4601-4610.	6.5	24
8	Fixed-size double-resonant nanolaminate plasmonic nanoantennas with wide spectral tunability and high optical cross-sections. Optik, 2021, 230, 166332.	2.9	3
9	Au/SiO ₂ -Nanolaminated Plasmonic Nanoantennas as Refractive-Index-Insensitive and Transparent Surface-Enhanced Raman Spectroscopy Substrates. ACS Applied Nano Materials, 2021, 4, 3175-3184.	5.0	15
10	Spectral tuning of double resonant nanolaminate plasmonic nanoantennas with a fixed size. Applied Physics Letters, 2021, 118, .	3.3	4
11	Nanostructured Au-Based Surface-Enhanced Raman Scattering Substrates and Multivariate Regression for pH Sensing. ACS Applied Nano Materials, 2021, 4, 5768-5777.	5.0	6
12	Plasmonic Calibration in Label-free Surface-enhanced Raman Spectroscopy for Improved Multivariate Analysis of Living Cells. , 2021, , .		0
13	Nanoscale Multiband Surface-enhanced Raman Spectroscopy by Multiresonant Nanolaminate Plasmonics. , 2021, , .		0
14	Photothermal self-healing of gold nanoparticle–polystyrene hybrids. Nanoscale, 2020, 12, 20726-20736.	5.6	8
15	Plasmonic Electronic Raman Scattering as Internal Standard for Spatial and Temporal Calibration in Quantitative Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 9543-9551.	4.6	35
16	Reusable Surface-Enhanced Raman Spectroscopy Membranes and Textiles via Template-Assisted Self-Assembly and Micro/Nanoimprinting. ACS Applied Materials & Interfaces, 2020, 12, 56290-56299.	8.0	34
17	Scalable nanolaminated SERS multiwell cell culture assay. Microsystems and Nanoengineering, 2020, 6, 47.	7.0	17
18	Sub-10 nm Nanolaminated Al2O3/HfO2 Coatings for Long-Term Stability of Cu Plasmonic Nanodisks in Physiological Environments. ACS Applied Materials & Interfaces, 2020, 12, 31952-31961.	8.0	5

#	Article	IF	CITATIONS
19	Partial Leidenfrost Evaporation-Assisted Ultrasensitive Surface-Enhanced Raman Spectroscopy in a Janus Water Droplet on Hierarchical Plasmonic Micro-/Nanostructures. ACS Nano, 2020, 14, 9521-9531.	14.6	37
20	Multiresonant Nanolaminate Plasmonic Metamaterials with Spatial Mode Overlap. , 2020, , .		0
21	Tantalum Pentoxide-based, All-dielectric Ultraviolet Metasurfaces. , 2020, , .		1
22	Nanoplasmonic E 4 Enhancement of Molecular Raman Scattering and Electronic Raman Scattering with Spatial Correlation. , 2020, , .		0
23	Electronic Raman Scattering Calibration for Quantitative Surface-enhanced Raman Spectroscopy and Improved Biostatistical Analysis. , 2020, , .		0
24	Leidenfrost Evaporation-Assisted Ultrasensitive Surface-Enhanced Raman Spectroscopy. , 2020, , .		0
25	Twisting Polarization of Ultrafast Pulses using Metasurfaces. , 2020, , .		0
26	RI-Insensitive Surface-enhanced Raman Spectroscopy (SERS) for Label-free Profiling and Classification of Living Cancer Cells. , 2020, , .		0
27	Multiresonant plasmonics with spatial mode overlap: overview and outlook. Nanophotonics, 2019, 8, 1199-1225.	6.0	35
28	Controllable planar electrodeposition of NaYF4: Yb3+, Er3+ thin films with efficient upconverting fluorescence. Journal of Luminescence, 2019, 214, 116580.	3.1	6
29	Refractive-Index-Insensitive Nanolaminated SERS Substrates for Label-Free Raman Profiling and Classification of Living Cancer Cells. Nano Letters, 2019, 19, 7273-7281.	9.1	63
30	Scalable Highâ€Performance Nanolaminated SERS Substrates Based on Multistack Vertically Oriented Plasmonic Nanogaps. Advanced Materials Technologies, 2019, 4, 1800689.	5.8	29
31	Sensors: Scalable Highâ€Performance Nanolaminated SERS Substrates Based on Multistack Vertically Oriented Plasmonic Nanogaps (Adv. Mater. Technol. 5/2019). Advanced Materials Technologies, 2019, 4, 1970028.	5.8	2
32	Real-Time Monitoring of Ligand Exchange Kinetics on Gold Nanoparticle Surfaces Enabled by Hot Spot-Normalized Surface-Enhanced Raman Scattering. Environmental Science & Technology, 2019, 53, 575-585.	10.0	38
33	Determining the Nature of Optical Forces with the Photon-Drag Effect. , 2019, , .		0
34	Improved Quantitative SERS Enabled by Surface Plasmon Enhanced Elastic Light Scattering. Analytical Chemistry, 2018, 90, 3227-3237.	6.5	56
35	Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering. Nano Letters, 2018, 18, 4409-4416.	9.1	32

#	Article	IF	CITATIONS
37	Multi-resonant Optical Nanocavities by Out-of-plane Magnetic Plasmon Hybridization. , 2018, , .		2
38	Superhydrophobic SERS Substrates based on Plasmonic Hierarchical Micro-nanostructures. , 2018, , .		1
39	Magnetic Plasmon Hybridization in Vertically Stacked Double-gap Nanocavities. , 2018, , .		1
40	Scalable SERS by Activating â \in œPassiveâ \in Hotspots in Multigap Nanoplasmonic Systems. , 2018, , .		0
41	Multiresonant Optical Response in Quasi-3D Multilayer Metal-Insulator-Metal Plasmonic Nanostructures. , 2018, , .		Ο
42	Multilayered metal-insulator nanocavities: toward tunable multi-resonance nano-devices for integrated optics. , 2017, , .		1
43	Quantitative SERS by hot spot normalization – surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance. Faraday Discussions, 2017, 205, 491-504.	3.2	31
44	Advances in nanowire bioelectronics. Reports on Progress in Physics, 2017, 80, 016701.	20.1	99
45	Multi-Resonant Optical Nanocavities with Continuous Spectral Tunability by Metal-dielectric Multilayer Engineering. , 2017, , .		0
46	Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14633-14638.	7.1	200
47	Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nature Nanotechnology, 2016, 11, 776-782.	31.5	160
48	General Strategy for Biodetection in High Ionic Strength Solutions Using Transistor-Based Nanoelectronic Sensors. Nano Letters, 2015, 15, 2143-2148.	9.1	215
49	Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nature Materials, 2015, 14, 1286-1292.	27.5	334
50	Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays. Applied Physics Letters, 2014, 104, .	3.3	37
51	Highly tunable ultra-narrow-resonances with optical nano-antenna phased arrays in the infrared. , 2014, , .		Ο
52	Long Term Stability of Nanowire Nanoelectronics in Physiological Environments. Nano Letters, 2014, 14, 1614-1619.	9.1	126
53	Plasmonic–Photonic Mode Coupling in Indium-Tin-Oxide Nanorod Arrays. ACS Photonics, 2014, 1, 163-172.	6.6	37
54	Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 2013, 8, 506-511.	31.5	657

#	Article	IF	CITATIONS
55	Hybridization of Localized and Guided Modes in 2D Metal–Insulator–Metal Nanocavity Arrays. Journal of Physical Chemistry C, 2013, 117, 2541-2546.	3.1	44
56	Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6694-6699.	7.1	85
57	Talbot effect beyond the paraxial limit at optical frequencies. Optics Express, 2012, 20, 14284.	3.4	35
58	Polarization-Dependent Multipolar Plasmon Resonances in Anisotropic Multiscale Au Particles. ACS Nano, 2012, 6, 1786-1794.	14.6	29
59	Liquid Plasmonics: Manipulating Surface Plasmon Polaritons via Phase Transitions. Nano Letters, 2012, 12, 4324-4328.	9.1	64
60	High-Rotational Symmetry Lattices Fabricated by Moiré Nanolithography. Nano Letters, 2012, 12, 4948-4952.	9.1	50
61	Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas. Nano Letters, 2012, 12, 269-274.	9.1	54
62	Plasmonic Bowtie Nanolaser Arrays. Nano Letters, 2012, 12, 5769-5774.	9.1	232
63	Delocalized Lattice Plasmon Resonances Show Dispersive Quality Factors. Journal of Physical Chemistry Letters, 2012, 3, 1381-1385.	4.6	53
64	Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays. ACS Nano, 2011, 5, 9161-9170.	14.6	140
65	Programmable Soft Lithography: Solvent-Assisted Nanoscale Embossing. Nano Letters, 2011, 11, 311-315.	9.1	145
66	Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nature Nanotechnology, 2011, 6, 423-427.	31.5	354
67	Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Nearâ€Infrared Wavelengths in a Plasmonic Library. Advanced Functional Materials, 2010, 20, 529-539.	14.9	58
68	Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, Three-Dimensional Nanohole Arrays. Nano Letters, 2010, 10, 3173-3178.	9.1	70
69	Toward Broadband Plasmonics: Tuning Dispersion in Rhombic Plasmonic Crystals. ACS Nano, 2010, 4, 1241-1247.	14.6	30
70	The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. Journal of Materials Science: Materials in Medicine, 2008, 19, 3465-3472.	3.6	157
71	Low temperature deposition of nanocrystalline TiO2films: enhancement of nanocrystal formation by energetic particle bombardment. Journal Physics D: Applied Physics, 2007, 40, 219-226.	2.8	31
72	Hydroxyapatite Films Deposited on TiN and TiO ₂ Buffer Layers by Radio-Frequency Magnetron Sputtering: Comparative Study. Key Engineering Materials, 2007, 334-335, 1133-1136.	0.4	2

#	Article	IF	CITATIONS
73	Plasma-controlled nanocrystallinity and phase composition of TiO2: A smart way to enhance biomimetic response. Journal of Biomedical Materials Research - Part A, 2007, 81A, 453-464.	4.0	42
74	The effect of surface roughness and wettability of nanostructured TiO2 film on TCA-8113 epithelial-like cells. Surface and Coatings Technology, 2006, 200, 6155-6160.	4.8	70