Ramadhansyah Putra Jaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4911950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The tailored traits of reclaimed asphalt pavement incorporating maltene: performance analyses. International Journal of Pavement Engineering, 2022, 23, 1800-1813.	4.4	12
2	The influence of nano-carbon from coconut shell ash as modifier on the properties of bitumen. Road Materials and Pavement Design, 2022, 23, 770-786.	4.0	10
3	Physical, rheological and chemical features of recycled asphalt embraced with a hybrid rejuvenating agent. International Journal of Pavement Engineering, 2022, 23, 3036-3054.	4.4	16
4	Behaviour of Hot Mix Asphalt Incorporating Untreated and Treated Waste Cooking Oil. International Journal of Pavement Research and Technology, 2022, 15, 577-588.	2.6	5
5	A new approach to enhance the reclaimed asphalt pavement features: role of maltene as a rejuvenator. Road Materials and Pavement Design, 2022, 23, 2507-2530.	4.0	7
6	Linear viscoelastic response of semi-circular asphalt sample based on digital image correlation and XFEM. Measurement: Journal of the International Measurement Confederation, 2022, 192, 110866.	5.0	11
7	Prediction of rutting resistance of porous asphalt mixture incorporating nanosilica. , 2022, , 477-486.		0
8	Effectiveness and efficiency of nano kaolin clay as bitumen modifier. , 2022, , 449-460.		0
9	Nano kaolin clay as bitumen modifier for sustainable development. , 2022, , 461-475.		2
10	Performance of Palm Oil Clinker Lightweight Aggregate Concrete Comprising Spent Garnet as Fine Aggregate Replacement. Advances in Civil Engineering, 2022, 2022, 1-13.	0.7	3
11	The Influence of Nano Titanium as Bitumen Modifier in Stone Mastic Asphalt. Advances in Materials Science and Engineering, 2022, 2022, 1-19.	1.8	5
12	Effect of Coral Aggregates of Blended Cement Concrete Subjected to Different Water Immersion Condition. Advances in Civil Engineering, 2022, 2022, 1-10.	0.7	7
13	Performance of High Strength Concrete Containing Palm Oil Fuel Ash and Metakaolin as Cement Replacement Material. Advances in Civil Engineering, 2022, 2022, 1-11.	0.7	4
14	Prediction Model of the Coring Asphalt Pavement Performance through Response Surface Methodology. Advances in Materials Science and Engineering, 2022, 2022, 1-17.	1.8	4
15	A review on rejuvenating materials used with reclaimed hot mix asphalt. Canadian Journal of Civil Engineering, 2021, 48, 233-249.	1.3	25
16	Properties of mortar with fine eggshell powder as partial cement replacement. Materials Today: Proceedings, 2021, 46, 1574-1581.	1.8	26
17	Physical, chemical and morphology characterisation of nano ceramic powder as bitumen modification. International Journal of Pavement Engineering, 2021, 22, 858-871.	4.4	15
18	Properties of cup lump rubber modified asphalt binder. Road Materials and Pavement Design, 2021, 22, 1329-1349	4.0	18

#	Article	IF	CITATIONS
19	Evaluation of Cold Mix Patching Materials Along Jalan Persiaran Mokhtar Dahari, Selangor. Lecture Notes in Civil Engineering, 2021, , 137-152.	0.4	0
20	Effect of Aluminium Powder on Kaolin-Based Geopolymer Characteristic and Removal of Cu2+. Materials, 2021, 14, 814.	2.9	19
21	Impacts of Maltene on the Wettability and Adhesion Properties of Rejuvenated Asphalt Binder. Arabian Journal for Science and Engineering, 2021, 46, 10557-10568.	3.0	12
22	Image Analysis of Surface Porosity Mortar Containing Processed Spent Bleaching Earth. Materials, 2021, 14, 1658.	2.9	6
23	Meta-analysis of studies on eggshell concrete using mixed regression and response surface methodology. Journal of King Saud University, Engineering Sciences, 2021, , .	2.0	8
24	Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review. Materials, 2021, 14, 1866.	2.9	35
25	The Influence of Eggshell as Coarse Aggregate Replacement in Hot Mix Asphalt. Rivista Di Filologia Classica, 2021, 1, 1-11.	0.4	1
26	Characterisation of microstructural and sound absorption properties of porous asphalt subjected to progressive clogging. Construction and Building Materials, 2021, 283, 122654.	7.2	19
27	Relation between Density and Compressive Strength of Foamed Concrete. Materials, 2021, 14, 2967.	2.9	47
28	Thermal performance of cooling strategies for asphalt pavement: A state-of-the-art review. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8, 356-373.	4.2	26
29	Influence of coal ash on the concrete properties and its performance under sulphate and chloride conditions. Environmental Science and Pollution Research, 2021, 28, 60787-60797.	5.3	5
30	Performance of Porous Asphalt Mixture Containing Seashell as Aggregate Replacement. Rivista Di Filologia Classica, 2021, 1, 18-28.	0.4	3
31	LABORATORY INVESTIGATION OF COAL BOTTOM ASH MODIFIED WARM MIX ASPHALT. Jurnal Teknologi (Sciences and Engineering), 2021, 83, 63-74.	0.4	1
32	CHARACTERIZATION OF MORTAR WITH PENNISETUM PURPUREUM ASHES AS CEMENT REPLACEMENT MATERIAL. IIUM Engineering Journal, 2021, 22, 83-97.	0.8	1
33	A Review on the Durability of Recycled Asphalt Mixtures Embraced with Rejuvenators. Sustainability, 2021, 13, 8970.	3.2	26
34	Effect of optimum utilization of silica fume and eggshell ash to the engineering properties of expansive soil. Journal of Materials Research and Technology, 2021, 14, 1401-1418.	5.8	14
35	Evaluation on the rheological and mechanical properties of concrete incorporating eggshell with tire powder. Journal of Materials Research and Technology, 2021, 14, 439-451.	5.8	19
36	Mathematical modelling of concrete compressive strength with waste tire rubber as fine aggregate. Journal of Mechanical Engineering and Sciences, 2021, 15, 8344-8355.	0.6	1

#	Article	IF	CITATIONS
37	Physicomechanical Assessments and Heavy Metals' Leaching Potential of Modified Asphalt Binders Incorporating Crumb Rubber and Tin Slag Powders. Advances in Materials Science and Engineering, 2021, 2021, 1-10.	1.8	1
38	Editorial: Trends and Advanced Materials for Pavement and Road Infrastructure. Frontiers in Materials, 2021, 8, .	2.4	1
39	Durability Phenomena of Bitumen and Bituminous Pavement Materials. Open Civil Engineering Journal, 2021, 15, 279-289.	0.8	0
40	Effects of maltene on the attributes of reclaimed asphalt pavement: Performance optimisation. Construction and Building Materials, 2021, 302, 124210.	7.2	11
41	CBA Self-compacting Concrete Exposed to Seawater by Wetting and Drying Cycles. SpringerBriefs in Applied Sciences and Technology, 2021, , 59-75.	0.4	0
42	A Review of Morphological and Chemical Properties of Porous Asphalt. Rivista Di Filologia Classica, 2021, 1, 45-49.	0.4	1
43	Ultra High-Performance Concrete as Alternative Repair Method: A Review. Journal of Failure Analysis and Prevention, 2021, 21, 2072-2080.	0.9	1
44	THE EFFECT OF UTILIZING SILICA FUME AND EGGSHELL ASH ON THE GEOTECHNICAL PROPERTIES OF SOFT KAOLIN CLAY. Jurnal Teknologi (Sciences and Engineering), 2021, 84, 159-170.	0.4	7
45	A Review of Asphaltic Crack Healing Approaches and Its Mechanism. Advances in Materials Science and Engineering, 2021, 2021, 1-15.	1.8	3
46	Performance Characterization of Stone Mastic Asphalt using Steel Fiber. Journal of Advanced Industrial Technology and Application, 2021, 02, .	0.1	2
47	Influence of diatomite filler on rheological properties of porous asphalt mastic. International Journal of Pavement Engineering, 2020, 21, 428-436.	4.4	17
48	Impacts of recycled crumb rubber powder and natural rubber latex on the modified asphalt rheological behaviour, bonding, and resistance to shear. Construction and Building Materials, 2020, 234, 117357.	7.2	72
49	Rejuvenation of Hot Mix Asphalt Incorporating High RAP Content: Issues to Consider. IOP Conference Series: Earth and Environmental Science, 2020, 498, 012009.	0.3	7
50	Site-specific ground response analysis at a site in the affected area of the 2016 Pidie Jaya earthquake. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012013.	0.6	0
51	Evaluating the Chemical and Rheological Attributes of Aged Asphalt: Synergistic Effects of Maltene and Waste Engine Oil Rejuvenators. Arabian Journal for Science and Engineering, 2020, 45, 8685-8697.	3.0	28
52	Selection of Contractor by Using Analytical Hierarchy Process (AHP). IOP Conference Series: Materials Science and Engineering, 2020, 712, 012014.	0.6	3
53	Effect of Dried Sewage Sludge on Compressive Strength of Concrete. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012042.	0.6	7
54	Experimental Study on Flexural Behaviour of Reinforced Foamed Concrete Square Hollow Beam. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012046.	0.6	3

#	Article	IF	CITATIONS
55	Finite Element Analysis on the Effect of Hollow Section on the Strength of Foamed Concrete Beam. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012048.	0.6	1
56	Ambient noise analysis for characterizing sub-surface dynamic parameters. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012012.	0.6	2
57	Evaluation of the sulphate resistance of foamed concrete containing processed spent bleaching earth. European Journal of Environmental and Civil Engineering, 2020, , 1-16.	2.1	6
58	Properties of concrete with eggshell powder: A review. Physics and Chemistry of the Earth, 2020, 120, 102951.	2.9	42
59	Strength Properties of Porous Concrete Pavement Blended with Nano Black Rice Husk Ash. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012038.	0.6	1
60	Effect of temperatures and loading rates on direct shear strength of asphaltic concrete using layer-parallel direct shear test. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012047.	0.6	2
61	An Investigation on Urban Circle Rail Transit: A Case Study on the Alignment of Mass Rapid Transit 3 (Circle Line). IOP Conference Series: Materials Science and Engineering, 2020, 712, 012003.	0.6	0
62	Liquefaction Potential Analysis of Reusep Prestress Bridge in Pidie Jaya due to 6.4 Mw Earthquake. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012010.	0.6	2
63	Waste Cooking Oil as Bio Asphalt Binder: A Critical Review. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012040.	0.6	9
64	The Influence of Steel Slag as Alternative Aggregate in Permeable Concrete Pavement. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012011.	0.6	4
65	Short Term Aging Effect of Asphaltic Concrete Incorporating Charcoal Ash from Coconut Shell. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012036.	0.6	3
66	Restoration of Aged Bitumen Properties Using Maltenes. IOP Conference Series: Materials Science and Engineering, 2020, 713, 012014.	0.6	7
67	Assessment of safety performance level on simple urban residential building: Case study at Bogor city Indonesia. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012004.	0.6	1
68	Nanoparticle in Asphalt Binder: A State-of-The-Art Review. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012023.	0.6	4
69	Performance of Coir Fiber Addition for Clay as a Sub-Grade for Pavement Design. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012009.	0.6	5
70	Strength and Porosity of Porous Concrete Pavement Containing Nano Black Rice Husk Ash. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012037.	0.6	8
71	Stability and Resilient Modulus of Porous Asphalt Incorporating Steel Fiber. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012027.	0.6	4
72	Selection of Method in Construction Industry by using Analytical Hierarchy Process (AHP). IOP Conference Series: Materials Science and Engineering, 2020, 712, 012015.	0.6	2

#	Article	IF	CITATIONS
73	Mechanical Performance of Stone Mastic Asphalt Incorporating Steel Fiber. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012026.	0.6	9
74	Volumetric Properties and Resilient Modulus of Stone Mastic Asphalt incorporating Cellulose Fiber. IOP Conference Series: Materials Science and Engineering, 2020, 712, 012028.	0.6	11
75	Selection of Best Consultant by using Analytical Hierarchy Process (AHP). IOP Conference Series: Materials Science and Engineering, 2020, 712, 012016.	0.6	1
76	Morphological and Physical Characteristic of Stone Mastic Asphalt Mixture Incorporating Nano Silica. Open Civil Engineering Journal, 2020, 14, 113-125.	0.8	7
77	Waste Tyre Rubber Application in Semi-Rigid and Flexible Pavement. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 1-21.	0.4	Ο
78	INFLUENCE OF PALM OIL BIOMASS CLINKER AND EMPTY FRUIT BUNCH FIBERS ON CONCRETE PROPERTIES. IIUM Engineering Journal, 2020, 21, 100-110.	0.8	1
79	Creep and resilient modulus properties of asphaltic concrete containing black rice husk ash. IOP Conference Series: Earth and Environmental Science, 2019, 220, 012005.	0.3	Ο
80	Rutting resistance of untreated and treated waste cooking oil in bitumen after aging condition. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012041.	0.3	6
81	Flexural strength properties of porous concrete pavement incorporating nano black rice husk ash. IOP Conference Series: Materials Science and Engineering, 2019, 527, 012044.	0.6	2
82	Properties of bitumen modified with latex. IOP Conference Series: Materials Science and Engineering, 2019, 527, 012063.	0.6	8
83	Coal bottom ash as a sustainable supplementary cementitious material for the concrete exposed to seawater. AIP Conference Proceedings, 2019, , .	0.4	4
84	Physical and chemical properties of cement with nano black rice husk ash. AIP Conference Proceedings, 2019, , .	0.4	7
85	Effects of Nano-kaolin clay on the rutting resistance of asphalt binder. AIP Conference Proceedings, 2019, , .	0.4	2
86	Correlation between functional and structural properties of flexible pavement. IOP Conference Series: Earth and Environmental Science, 2019, 220, 012007.	0.3	1
87	Overview of Monsoon Induced Coastal Erosion Disaster in Peninsular Malaysia Based On Mass-Media Reports. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012035.	0.3	0
88	Permeability coefficient of porous asphalt mixture containing coconut shells and fibres. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012037.	0.3	3
89	Performance of asphalt mixture incorporating kaolin clay at different aging. IOP Conference Series: Earth and Environmental Science, 2019, 220, 012004.	0.3	1
90	Influence of pavement condition towards accident number on Malaysian highway. IOP Conference Series: Earth and Environmental Science, 2019, 220, 012008.	0.3	3

#	Article	IF	CITATIONS
91	Porosity and permeability properties of Nano black rice hush ash in porous concrete pavement. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012039.	0.3	1
92	Effects of black rice husk ash on asphalt mixture under aging condition. IOP Conference Series: Earth and Environmental Science, 2019, 220, 012006.	0.3	0
93	Marshall stability properties of asphaltic concrete with kaolin clay under aging. IOP Conference Series: Earth and Environmental Science, 2019, 220, 012040.	0.3	1
94	Performance of Nano kaolin clay as modified binder in porous asphalt mixture. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012036.	0.3	2
95	Porosity and density characteristic of double-layer concrete paving blocks incorporating rubber granules. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012038.	0.3	0
96	Stability and voids properties of hot mix asphalt containing black rice husk ash. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012044.	0.3	1
97	Thermal performance of waste materials as aggregate replacement in asphalt pavement. IOP Conference Series: Earth and Environmental Science, 2019, 220, 012011.	0.3	0
98	Effect of compaction temperature on porous asphalt performance. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012011.	0.3	1
99	Moisture susceptibility of porous asphalt mixture with Nano silica modified asphalt binder. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012028.	0.3	6
100	Effect of compaction temperature on the performance of dense-graded asphalt mixture. IOP Conference Series: Earth and Environmental Science, 2019, 244, 012012.	0.3	6
101	International Conference on Agricultural Technology, Engineering, and Environmental Sciences. IOP Conference Series: Earth and Environmental Science, 2019, 365, 011001.	0.3	0
102	MECHANICAL PERFORMANCE OF ASPHALT MIXTURE CONTAINING CUP LUMP RUBBER. Jurnal Teknologi (Sciences and Engineering), 2019, 81, .	0.4	4
103	Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious material. Engineering Science and Technology, an International Journal, 2019, 22, 515-522.	3.2	42
104	Microstructure and physical properties of nano charcoal ash as binder. Proceedings of Institution of Civil Engineers: Construction Materials, 2019, 172, 103-115.	1.1	6
105	Relationship Between Rheological Properties of Nano Polymer Modified Asphalt Binder and Permanent Deformation of Asphalt Mixture. International Journal of Integrated Engineering, 2019, 11, .	0.4	5
106	Physical properties of bitumen containing diatomite and waste engine oil. Malaysian Journal of Fundamental and Applied Sciences, 2019, 15, 528-531.	0.8	1
107	Mechanical performance of asphalt mixture containing nano-charcoal coconut shell ash. Construction and Building Materials, 2018, 173, 40-48.	7.2	40
108	Effects of nanocharcoal coconut-shell ash on the physical and rheological properties of bitumen. Construction and Building Materials, 2018, 158, 1-10.	7.2	48

#	Article	IF	CITATIONS
109	Stiffness Modulus of Asphaltic Concrete Incorporating Coir Fibre and Subjected to Aging. E3S Web of Conferences, 2018, 65, 02003.	0.5	0
110	Performance of Waste Cooking Oil on Aged Asphalt Mixture. E3S Web of Conferences, 2018, 65, 02002.	0.5	2
111	Marshall stability properties of asphalt mixture incorporating black rice husk ash. Materials Today: Proceedings, 2018, 5, 22056-22062.	1.8	7
112	Creep stiffness and voids characteristic of asphalt mixture with waste cooking oil after aging. AIP Conference Proceedings, 2018, , .	0.4	1
113	Effect of different sizes of palm oil fuel ash (POFA) towards physical properties of modified bitumen. IOP Conference Series: Earth and Environmental Science, 2018, 140, 012108.	0.3	4
114	Engineering properties of bitumen modified with bio-oil. MATEC Web of Conferences, 2018, 250, 02003.	0.2	22
115	Prediction of Sound Absorption Coefficient for Double Layer Rubberised Concrete Blocks. International Journal of Engineering and Technology(UAE), 2018, 7, 704.	0.3	3
116	Effect of grinding period on physical properties of modified bitumen using palm oil fuel ash (POFA). Journal of Physics: Conference Series, 2018, 1049, 012004.	0.4	2
117	Stability properties of asphalt mixture incorporating coconut shell. Journal of Fundamental and Applied Sciences, 2018, 9, 16.	0.2	2
118	Effect of various filler types on the properties of porous asphalt mixture. IOP Conference Series: Materials Science and Engineering, 2018, 342, 012036.	0.6	13
119	Stabilizing Asphalt Concrete Using Kenaf Fibers. Advanced Science Letters, 2018, 24, 3963-3967.	0.2	5
120	Assessing the Bond Strength of Hot Mix Asphalt Pavement for Wearing and Binder Courses. International Journal of Technology, 2018, 9, 925.	0.8	4
121	A Review on Potential Use of Coal Bottom Ash as a Supplementary Cementing Material in Sustainable Concrete Construction. International Journal of Integrated Engineering, 2018, 10, .	0.4	22
122	Influence of Ground Coal Bottom Ash on the Properties of Concrete. International Journal of Sustainable Construction Engineering and Technology, 2018, 9, .	0.3	8
123	Physical and Chemical Properties of Rice Husk Ash Concrete Under Seawater. International Journal of Integrated Engineering, 2018, 10, .	0.4	0
124	Strength Properties of Rice Husk Ash Concrete Under Sodium Sulphate Attack. International Journal of Integrated Engineering, 2018, 10, .	0.4	1
125	Compressive and Flexural Strength of Concrete Containing Palm Oil Biomass Clinker with Hooked-End Steel Fibers. International Journal of Integrated Engineering, 2018, 10, .	0.4	1
126	Pollution to solution: Capture and sequestration of carbon dioxide (CO 2) and its utilization as a renewable energy source for a sustainable future. Renewable and Sustainable Energy Reviews, 2017, 71, 112-126.	16.4	462

#	Article	IF	CITATIONS
127	Fire resistance of ultra-high performance fibre reinforced concrete due to heating and cooling. MATEC Web of Conferences, 2017, 87, 01021.	0.2	6
128	Effect of Waste Plastic as Bitumen Modified in Asphalt Mixture. MATEC Web of Conferences, 2017, 103, 09018.	0.2	19
129	A Review: The Effect of Grinded Coal Bottom Ash on Concrete. MATEC Web of Conferences, 2017, 103, 01007.	0.2	4
130	Strength and Properties of Concrete Pavement Incorporating Multiple Blended Binders. Materials Science Forum, 2017, 889, 265-269.	0.3	10
131	Effects of Waste Plastic on the Physical and Rheological Properties of Bitumen. IOP Conference Series: Materials Science and Engineering, 2017, 204, 012016.	0.6	12
132	Effect of Nano Silica on the Physical Property of Porous Concrete Pavement. IOP Conference Series: Materials Science and Engineering, 2017, 226, 012043.	0.6	5
133	Stability and Volumetric Properties of Asphalt Mixture Containing Waste Plastic. MATEC Web of Conferences, 2017, 103, 09002.	0.2	9
134	Performance of nanoceramic powder on the chemical and physical properties of bitumen. Construction and Building Materials, 2017, 156, 496-505.	7.2	66
135	Effect of black rice husk ash on the physical and rheological properties of bitumen. AIP Conference Proceedings, 2017, , .	0.4	9
136	Mechanical performance of asphaltic concrete incorporating untreated and treated waste cooking oil. Construction and Building Materials, 2017, 150, 653-663.	7.2	56
137	Effect of Charcoal Ash Coconut Shell from Waste Material at Different Size on the Physical Properties of Bitumen. Key Engineering Materials, 2017, 744, 121-125.	0.4	9
138	Effects of mixture design variables on rubber–bitumen interaction: properties of dry mixed rubberized asphalt mixture. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	36
139	Performance of asphaltic concrete incorporating styrene butadiene rubber subjected to varying aging condition. AIP Conference Proceedings, 2017, , .	0.4	2
140	Voids characteristics of asphaltic concrete containing coconut shell. IOP Conference Series: Materials Science and Engineering, 2017, 222, 012001.	0.6	3
141	PRODUCTION OF BIODIESEL FROM PALM OIL USING EGG SHELL WASTE AS HETEROGENEOUS CATALYST. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	5
142	A REVIEW OF CHEMICAL AND PHYSICAL PROPERTIES OF COCONUT SHELL IN ASPHALT MIXTURE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	19
143	RHEOLOGICAL PROPERTIES OF STYRENE BUTADIENE RUBBER MODIFIED BITUMEN BINDER. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	18

144 ANALYSIS OF CAR FOLLOWING HEADWAY ALONG MULTILANE HIGHWAY. Jurnal Teknologi (Sciences and) Tj ETQq0.0 rgBT Overlock

#	Article	IF	CITATIONS
145	Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete. MATEC Web of Conferences, 2016, 78, 01068.	0.2	0
146	Evaluation of bond strength between fire-damaged normal concrete substance and ultra-high-performance fiber-reinforced concrete as a repair material. World Journal of Engineering, 2016, 13, 461-466.	1.6	4
147	Chloride penetration of RHA concrete under marine environment. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2016, 169, 76-85.	0.2	4
148	Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder. Construction and Building Materials, 2016, 126, 218-226.	7.2	146
149	Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash. MATEC Web of Conferences, 2016, 47, 01010.	0.2	19
150	Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete. IOP Conference Series: Materials Science and Engineering, 2016, 133, 012045.	0.6	1
151	Palm oil fuel ash as potential green micro-filler in polymer concrete. Construction and Building Materials, 2016, 102, 950-960.	7.2	58
152	DETERMINATION OF GROOVE AND MECHANICAL PROPERTIES OF UNDERSIDE SHAPED CONCRETE PAVER. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	1
153	Steel Slag as A Road Construction Material. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	22
154	A Review on The Exploration of Nanomaterials Application in Pavement Engineering. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	18
155	A REVIEW OF UTILIZATION OF COCONUT SHELL AND COCONUT FIBER IN ROAD CONSTRUCTION. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	7
156	APPLICATION OF NANOTECHNOLOGY IN ASPHALT BINDER: A CONSPECTUS AND OVERVIEW. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	1
157	STRENGTH OF POROUS CONCRETE PAVEMENT AT DIFFERENT CURING METHODS. Jurnal Teknologi (Sciences) Tj	ETQq11(0:4).784314 rgB 0
158	An Overall Review: Modified Asphalt Binder Containing Sasobit in Warm-Mix Asphalt Technology. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	4
159	Performance of Modified Asphalt Binder with Tire Rubber Powder. Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.7	84314 rgE 0.4	3T 18verlock
160	Aggregate Angularity Effect on Porous Asphalt Engineering Properties and Performance. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	3
161	Microstructural characterisation of dry mixed rubberised asphalt mixtures. Construction and Building Materials, 2015, 82, 173-183.	7.2	32
162	Curing of Asphalt Emulsified Tack Coat Subjected to Malaysian Weather Conditions. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	8

#	Article	IF	CITATIONS
163	Utilization of Nano Silica as Cement Paste in Mortar and Porous Concrete Pavement. Advanced Materials Research, 2015, 1113, 135-139.	0.3	6
164	Performance of blended ash geopolymer concrete at elevated temperatures. Materials and Structures/Materiaux Et Constructions, 2015, 48, 709-720.	3.1	103
165	Strength and Microstructure Properties of Double Layered Concrete Paving Blocks Containing Waste Tyre Rubber Granules. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	3
166	A Review of Crumb Rubber Modification in Dry Mixed Rubberised Asphalt Mixtures. Jurnal Teknologi (Sciences and Engineering), 2014, 70, .	0.4	18
167	Performance of Steel Slag in Highway Surface Course. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.4	3
168	Laboratory Investigation on the Effects of Flaky Aggregates on Dynamic Creep and Resilient Modulus of Asphalt Mixtures. Jurnal Teknologi (Sciences and Engineering), 2014, 70, .	0.4	12
169	Evaluation of Binder Absorption in Asphalt Mixture with Various Aging Conditions Using Rice Method. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.4	1
170	Influences of Crumb Rubber Sizes on Hot Mix Asphalt Mixture. Jurnal Teknologi (Sciences and) Tj ETQq0 0 0 rgBT	/Overlock	1g Tf 50 46
171	Performance of RHA Blended Cement Concrete under Sodium Chloride via Wetting and Drying. Applied Mechanics and Materials, 2014, 554, 106-110.	0.2	3
172	Effect of Rice Husk Ash Fineness on the Properties of Concrete. Applied Mechanics and Materials, 2014, 554, 203-207.	0.2	5
173	Double Layer Concrete Paving Blocks Using Waste Tyre Rubber as Aggregate Replacement. Applied Mechanics and Materials, 2014, 554, 128-132.	0.2	8
174	Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cycles. Advances in Cement Research, 2014, 26, 145-154.	1.6	34
175	Properties of Asphaltic Concrete Containing Sasobit®. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.4	1
176	Effect of Using Waste Tyre Rubber on the Properties of Double Layer Rubberized Concrete Paving Blocks. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.4	2
177	Aggregate Degradation Characteristics of Stone Mastic Asphalt Mixtures. Jurnal Teknologi (Sciences) Tj ETQq1 1	0.784314 0.4	rgBT /Over
178	Properties of Porous Asphalt Mixture Made with Styrene Butadiene Styrene under Long Term Oven Ageing. Advanced Materials Research, 2012, 486, 378-383.	0.3	16
179	Effect of rice husk ash fineness on the chemical and physical properties of concrete. Magazine of Concrete Research, 2011, 63, 313-320.	2.0	59

180Influence of Sulphate on the Moisture Movement of Calcium Silicate Brick Masonry Wall. Advanced
Materials Research, 2010, 133-134, 201-204.0.30

Ramadhansyah Putra Jaya

#	Article	IF	CITATIONS
181	Elasticity of Calcium Silicate Brick Masonry Wall Due to Sulphate Attack. Advanced Materials Research, 2010, 133-134, 195-200.	0.3	0
182	Properties of Mortar Containing Rice Husk Ash at Different Temperature and Exposed to Aggressive Environment. Advanced Materials Research, 0, 620, 87-93.	0.3	14
183	A Review of Porous Concrete Pavement: Applications and Engineering Properties. Applied Mechanics and Materials, 0, 554, 37-41.	0.2	14
184	The Indirect Tensile Strength of Palm Oil Fuel Ash (POFA) Modified Asphaltic Concrete. Applied Mechanics and Materials, 0, 587-589, 1270-1275.	0.2	17
185	Strength of Concrete Containing Rice Husk Ash Subjected to Sodium Sulfate Solution via Wetting and Drying Cyclic. Applied Mechanics and Materials, 0, 534, 3-8.	0.2	4
186	Porous Concrete Paving Blocks Using Coarse Aggregate. Applied Mechanics and Materials, 0, 554, 111-115.	0.2	6
187	Use of Imaging Techniques for Viewing the Internal Structure of Rubberised Asphalt Mixtures. Applied Mechanics and Materials, 0, 695, 8-11.	0.2	6
188	Chemical Properties of Waste Tyre Rubber Granules. Advanced Materials Research, 0, 911, 77-81.	0.3	17
189	Cementitious Materials Usage in Self-Compacting Concrete: A Review. Advanced Materials Research, 0, 1113, 153-160.	0.3	7
190	The Performance of Styrene Butadiene Rubber on the Engineering Properties of Asphaltic Concrete AC14. Key Engineering Materials, 0, 700, 238-246.	0.4	3
191	The Influence of Coconut Shell as Coarse Aggregates in Asphalt Mixture. Key Engineering Materials, 0, 700, 227-237.	0.4	18
192	Effect of Antioxidant Characteristic from Waste Cooking Oil in Modified Asphalt Binder. Key Engineering Materials, 0, 700, 197-206.	0.4	5
193	Chemical Identification of Waste Cooking Oil as Additive in Bitumen. Key Engineering Materials, 0, 700, 207-215.	0.4	15
194	Performance of Waste Cooking Oil in Asphalt Binder Modification. Key Engineering Materials, 0, 700, 216-226.	0.4	20
195	Noncompliance of the occupational safety and health legislation in the Malaysian construction industry. IOP Conference Series: Earth and Environmental Science, 0, 220, 012043.	0.3	3
196	Voids Characteristic of Hot Mix Asphalt Containing Waste Cooking Oil. IOP Conference Series: Earth and Environmental Science, 0, 244, 012049.	0.3	3
197	Stability and rutting resistance of porous asphalt mixture incorporating coconut shells and fibres. IOP Conference Series: Earth and Environmental Science, 0, 244, 012043.	0.3	11
198	Engineering properties of asphalt binder modified with cup lump rubber. IOP Conference Series: Earth and Environmental Science, 0, 220, 012014.	0.3	7

Ramadhansyah Putra Jaya

#	Article	IF	CITATIONS
199	A comparative study of Kuantan bauxite mineralogy as potential material in civil engineering. IOP Conference Series: Earth and Environmental Science, 0, 244, 012002.	0.3	1
200	Engineering properties of crumb rubber modified dense-graded asphalt mixtures using dry process. IOP Conference Series: Earth and Environmental Science, 0, 220, 012009.	0.3	11
201	Causes of crane accidents at construction sites in Malaysia. IOP Conference Series: Earth and Environmental Science, 0, 220, 012028.	0.3	12
202	Causes of fatal construction accidents in Malaysia. IOP Conference Series: Earth and Environmental Science, 0, 220, 012044.	0.3	25
203	Properties of Mortar with Waste Tyre Rubber as Partial Sand Replacement. Key Engineering Materials, 0, 879, 49-61.	0.4	8
204	The Usage of Treated Plastic as Additive to Improve the Asphalt Mixture's Performance by Using Dry Mix Method. Key Engineering Materials, 0, 879, 126-135.	0.4	5
205	Properties of Concrete with Eggshell Powder and Tyre Rubber Crumb. Key Engineering Materials, 0, 879, 34-48.	0.4	4
206	Effect of Black Rice Husk Ash on Asphaltic Concrete Properties under Aging Condition. IOP Conference Series: Materials Science and Engineering, 0, 431, 032003.	0.6	1
207	Performance of Asphaltic Concrete Incorporating Fly Ash under Low Temperature. Key Engineering Materials, 0, 912, 153-169.	0.4	0
208	Image Analysis and Mechanical Properties of Asphalt Mixture with Waste Plastic. Key Engineering Materials, 0, 912, 135-152.	0.4	0
209	The Influence of Coal Bottom Ash as Filler in Asphalt Mixture. Key Engineering Materials, 0, 912, 185-198.	0.4	3
210	Mechanical Properties of Stone Mastic Asphalt Incorporating Nano Titanium Modified Asphalt Binder. Key Engineering Materials, 0, 912, 55-65.	0.4	1