Mason W Freeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4911444/publications.pdf

Version: 2024-02-01

28 papers 4,314 citations

430754 18 h-index 26 g-index

28 all docs

28 docs citations

28 times ranked

5468 citing authors

#	Article	IF	CITATIONS
1	An overview of the process, progress, and outcomes of a National Center for Accelerated Innovation: The Boston Biomedical Innovation Center Experience. Journal of Clinical and Translational Science, 2021, 5, e137.	0.3	O
2	An AAV-based, room-temperature-stable, single-dose COVID-19 vaccine provides durable immunogenicity and protection in non-human primates. Cell Host and Microbe, 2021, 29, 1437-1453.e8.	5.1	53
3	A 12â€week, randomized, doubleâ€blind, placeboâ€controlled, fourâ€arm doseâ€finding phase 2 study evaluatir bexagliflozin as monotherapy for adults with type 2 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 566-573.	ng 2 . 2	16
4	Case 22-2019: A 65-Year-Old Woman with Weakness, Dark Urine, and Dysphagia. New England Journal of Medicine, 2019, 381, 275-283.	13.9	9
5	A 96â€week, multinational, randomized, doubleâ€blind, parallelâ€group, clinical trial evaluating the safety and effectiveness of bexagliflozin as a monotherapy for adults with type 2 diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 2496-2504.	2.2	24
6	A 24â€week, randomized, doubleâ€blind, activeâ€controlled clinical trial comparing bexagliflozin with sitagliptin as an adjunct to metformin for the treatment of type 2 diabetes in adults. Diabetes, Obesity and Metabolism, 2019, 21, 2248-2256.	2.2	16
7	Safety and Effectiveness of Bexagliflozin in Patients With Type 2 Diabetes Mellitus and Stage 3a/3b CKD. American Journal of Kidney Diseases, 2019, 74, 328-337.	2.1	43
8	Longâ€term effects of patiromer for hyperkalaemia treatment in patients with mild heart failure and diabetic nephropathy on angiotensinâ€converting enzymes/angiotensin receptor blockers: results from AMETHYSTâ€DN. ESC Heart Failure, 2018, 5, 592-602.	1.4	45
9	NIH Centers for Accelerated Innovations Program: principles, practices, successes and challenges. Nature Reviews Drug Discovery, 2017, 16, 663-664.	21.5	2
10	Effect of Patiromer on Serum Potassium Level in Patients With Hyperkalemia and Diabetic Kidney Disease. JAMA - Journal of the American Medical Association, 2015, 314, 151.	3.8	370
11	Patiromer induces rapid and sustained potassium lowering in patients with chronic kidney disease and hyperkalemia. Kidney International, 2015, 88, 1427-1433.	2.6	90
12	Targeting innate immunity for CV benefit. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 15-23.	0.5	6
13	Scavenger Receptors in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1702-1711.	1.1	461
14	Statins, cholesterol, and the prevention of coronary heart disease. FASEB Journal, 2006, 20, 200-201.	0.2	10
15	Atherosclerosis and innate immune signaling. Annals of Medicine, 2005, 37, 130-140.	1.5	37
16	Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. Journal of Clinical Investigation, 2005, 115, 2192-2201.	3.9	324
17	Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nature Medicine, 2004, 10, 416-421.	15.2	579
18	The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades. Physiological Genomics, 2004, 19, 319-330.	1.0	270

#	Article	IF	CITATIONS
19	Activation of signaling pathways by putative scavenger receptor class A (SR-A) ligands requires CD14 but not SR-A. Biochemical and Biophysical Research Communications, 2003, 310, 542-549.	1.0	48
20	Scavenger Receptors Class A-I/II and CD36 Are the Principal Receptors Responsible for the Uptake of Modified Low Density Lipoprotein Leading to Lipid Loading in Macrophages. Journal of Biological Chemistry, 2002, 277, 49982-49988.	1.6	826
21	A CD36-initiated Signaling Cascade Mediates Inflammatory Effects of β-Amyloid. Journal of Biological Chemistry, 2002, 277, 47373-47379.	1.6	302
22	The role of PPAR-Î ³ in macrophage differentiation and cholesterol uptake. Nature Medicine, 2001, 7, 41-47.	15.2	476
23	Divergent Response to LPS and Bacteria in CD14-Deficient Murine Macrophages. Journal of Immunology, 2000, 165, 4272-4280.	0.4	205
24	In Vitro–Differentiated Embryonic Stem Cell Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1647-1654.	1.1	32
25	Functional Changes in Scavenger Receptor Binding Conformation Are Induced by Charge Mutants Spanning the Entire Collagen Domain. Journal of Biological Chemistry, 1998, 273, 19592-19601.	1.6	48
26	Of mice, men and cholesterol. Hepatology, 1994, 19, 1054-1056.	3.6	0
27	Mutations in Signal Sequence Cleavage Domain of Preproparathyroid Hormone Alter Protein Translocation, Signal Sequence Cleavage, and Membrane-Binding Properties. Molecular Endocrinology, 1989, 3, 240-250.	3.7	19
28	Preproparathyroid Hormone: A Model for Analyzing the Secretory Pathway. Annals of the New York Academy of Sciences, 1987, 493, 43-49.	1.8	3