List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4910579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustained intracellular calcium rise mediates neuronal mitophagy in models of autosomal dominant optic atrophy. Cell Death and Differentiation, 2022, 29, 167-177.	11.2	18
2	One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells, 2022, 11, 214.	4.1	32
3	The complex interplay between autophagy and cell death pathways. Biochemical Journal, 2022, 479, 75-90.	3.7	16
4	Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis. Nature Communications, 2022, 13, 651.	12.8	21
5	Assessment of dopaminergic neuron degeneration in a C.Âelegans model of Parkinson's disease. STAR Protocols, 2022, 3, 101264.	1.2	8
6	Monitoring autophagic flux in Caenorhabditis elegans using a p62/SQST-1 reporter. Methods in Cell Biology, 2021, 165, 73-87.	1.1	1
7	Editorial: Mitophagy in Health and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 647036.	3.7	0
8	Molecular Basis of Neuronal Autophagy in Ageing: Insights from Caenorhabditis elegans. Cells, 2021, 10, 694.	4.1	10
9	Incidence and prognosis of clonal hematopoiesis in patients with chronic idiopathic neutropenia. Blood, 2021, 138, 1249-1257.	1.4	15
10	Monitoring agingâ€associated structural alterations in Caenorhabditis elegans striated muscles via polarizationâ€dependent secondâ€harmonic generation measurements. Journal of Biophotonics, 2021, 14, e202100173.	2.3	2
11	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
12	Selective Autophagy as a Potential Therapeutic Target in Age-Associated Pathologies. Metabolites, 2021, 11, 588.	2.9	1
13	Autophagy in healthy aging and disease. Nature Aging, 2021, 1, 634-650.	11.6	467
14	Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Reports, 2021, 36, 109668.	6.4	26
15	Editor Profile: Nektarios Tavernarakis. FEBS Journal, 2021, , .	4.7	0
16	Mitophagy mechanisms in neuronal physiology and pathology during ageing. Biophysical Reviews, 2021, 13, 955-965.	3.2	6
17	Mitophagy. , 2021, , 976-986.		0
18	Mitochondrial Homeostasis in Neurodegeneration and Ageing. Advances in Experimental Medicine and Biology, 2021, 1339, 381-382.	1.6	0

#	Article	IF	CITATIONS
19	Mitochondrial maturation drives germline stem cell differentiation in Caenorhabditis elegans. Cell Death and Differentiation, 2020, 27, 601-617.	11.2	27
20	Mitophagy and Neuroprotection. Trends in Molecular Medicine, 2020, 26, 8-20.	6.7	246
21	SUMOylation in Neurodegenerative Diseases. Gerontology, 2020, 66, 122-130.	2.8	43
22	Synaptic vesicle fusion is modulated through feedback inhibition by dopamine autoâ€receptors. Synapse, 2020, 74, e22131.	1.2	11
23	Acyl-CoA-binding protein (ACBP): a phylogenetically conserved appetite stimulator. Cell Death and Disease, 2020, 11, 7.	6.3	34
24	Sex-specific regulation of neuronal functions in Caenorhabditis elegans: the sex-determining protein TRA-1 represses goa-1/Gα(i/o). Molecular Genetics and Genomics, 2020, 295, 357-371.	2.1	3
25	Autophagy mechanisms and roles: recent advances and implications. FEBS Journal, 2020, 287, 5024-5026.	4.7	6
26	UniProt-Related Documents (UniReD): assisting wet lab biologists in their quest on finding novel counterparts in a protein network. NAR Genomics and Bioinformatics, 2020, 2, Iqaa005.	3.2	8
27	Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mechanisms of Ageing and Development, 2020, 191, 111345.	4.6	7
28	Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy. Nature Communications, 2020, 11, 4029.	12.8	50
29	SUMO promotes longevity and maintains mitochondrial homeostasis during ageing in Caenorhabditis elegans. Scientific Reports, 2020, 10, 15513.	3.3	11
30	Inflammation brakes mitochondrial metabolism in obesity. Nature Immunology, 2020, 21, 1143-1145.	14.5	8
31	Molecular Interventions towards Multiple Sclerosis Treatment. Brain Sciences, 2020, 10, 299.	2.3	9
32	Editorial: Mitophagy in physiology and pathology. Mechanisms of Ageing and Development, 2020, 190, 111291.	4.6	1
33	Crosstalk between Endo/Exocytosis and Autophagy in Health and Disease. Biotechnology Journal, 2020, 15, e1900267.	3.5	14
34	Nucleophagy mediators and mechanisms. Progress in Molecular Biology and Translational Science, 2020, 172, 1-14.	1.7	7
35	Regulation and roles of mitophagy at synapses. Mechanisms of Ageing and Development, 2020, 187, 111216.	4.6	37
36	Caenorhabditis elegans as a model system for human diseases. Current Opinion in Biotechnology, 2020, 63, 118-125.	6.6	63

#	Article	IF	CITATIONS
37	Mitochondrial turnover and homeostasis in ageing and neurodegeneration. FEBS Letters, 2020, 594, 2370-2379.	2.8	35
38	Regulation and Roles of Autophagy in the Brain. Advances in Experimental Medicine and Biology, 2020, 1195, 33-33.	1.6	11
39	ACBP is an appetite stimulator across phylogenetic barriers. Cell Stress, 2020, 4, 27-29.	3.2	7
40	Modeling Age-Associated Neurodegenerative Diseases in Caenorhabditis elegans . Journal of Visualized Experiments, 2020, , .	0.3	0
41	Mitophagy. , 2020, , 1-11.		Ο
42	Assessment of de novo Protein Synthesis Rates in Caenorhabditis elegans . Journal of Visualized Experiments, 2020, , .	0.3	3
43	Acyl-CoA-Binding Protein Is a Lipogenic Factor that Triggers Food Intake and Obesity. Cell Metabolism, 2019, 30, 754-767.e9.	16.2	67
44	Moderation of neural excitation promotes longevity. Nature, 2019, 574, 338-340.	27.8	0
45	3,4â€Dimethoxychalcone induces autophagy through activation of the transcription factors <scp>TFE</scp> 3 and <scp>TFEB</scp> . EMBO Molecular Medicine, 2019, 11, e10469.	6.9	45
46	Emerging Roles of Lipophagy in Health and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 185.	3.7	98
47	Dynamics of Iron Homeostasis in Health and Disease: Molecular Mechanisms and Methods for Iron Determination. Series in Bioengineering, 2019, , 105-145.	0.6	1
48	Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nature Neuroscience, 2019, 22, 401-412.	14.8	1,008
49	Nucleophagy: from homeostasis to disease. Cell Death and Differentiation, 2019, 26, 630-639.	11.2	75
50	Mitophagy Dynamics in Caenorhabditis elegans. Methods in Molecular Biology, 2019, 1880, 655-668.	0.9	3
51	The Cytoskeleton as a Modulator of Aging and Neurodegeneration. Advances in Experimental Medicine and Biology, 2019, 1178, 227-245.	1.6	33
52	Aging in the Nematode Caenorhabditis elegans. , 2019, , 88-88.		1
53	Sexâ€specific regulation of aging in <i>Caenorhabditis elegans</i> . Aging Cell, 2018, 17, e12724.	6.7	14
54	Aspirin Recapitulates Features of Caloric Restriction. Cell Reports, 2018, 22, 2395-2407.	6.4	98

#	Article	IF	CITATIONS
55	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
56	Regulation and Roles of Autophagy at Synapses. Trends in Cell Biology, 2018, 28, 646-661.	7.9	90
57	Mitochondrial contributions to neuronal development and function. Biological Chemistry, 2018, 399, 723-739.	2.5	17
58	Demonstrating Improved Multiple Transportâ€Meanâ€Freeâ€Path Imaging Capabilities of Light Sheet Microscopy in the Quantification of Fluorescence Dynamics. Biotechnology Journal, 2018, 13, 1700419.	3.5	6
59	The PMR1 pump in alpha-synuclein toxicity and neurodegeneration. Neuroscience Letters, 2018, 663, 66-71.	2.1	5
60	Mitophagy Modulators. , 2018, , 433-433.		5
61	Hypoxia and Selective Autophagy in Cancer Development and Therapy. Frontiers in Cell and Developmental Biology, 2018, 6, 104.	3.7	146
62	Maintenance of Proteostasis by P Body-Mediated Regulation of eIF4E Availability during Aging in Caenorhabditis elegans. Cell Reports, 2018, 25, 199-211.e6.	6.4	31
63	Novel Insights Into the Anti-aging Role of Mitophagy. International Review of Cell and Molecular Biology, 2018, 340, 169-208.	3.2	31
64	Multimodal sensory processing in <i>Caenorhabditis elegans</i> . Open Biology, 2018, 8, .	3.6	36
65	Autophagy in Age-Associated Neurodegeneration. Cells, 2018, 7, 37.	4.1	87
66	The Role of Mitophagy in Innate Immunity. Frontiers in Immunology, 2018, 9, 1283.	4.8	161
67	Small heat shock proteins and neurodegeneration: recent developments. Biomolecular Concepts, 2018, 9, 94-102.	2.2	17
68	Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology, 2018, 20, 1013-1022.	10.3	876
69	Small heat shock proteins in ageing and age-related diseases. Cell Stress and Chaperones, 2017, 22, 481-492.	2.9	33
70	The role of SUMOylation in ageing and senescent decline. Mechanisms of Ageing and Development, 2017, 162, 85-90.	4.6	22
71	Mitophagy in neurodegeneration and aging. Neurochemistry International, 2017, 109, 202-209.	3.8	272
72	Assessing Mitochondrial Selective Autophagy in the Nematode Caenorhabditis elegans. Methods in Molecular Biology, 2017, 1567, 349-361.	0.9	8

#	Article	IF	CITATIONS
73	Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. , 2017, 178, 157-174.		112
74	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
75	Monitoring Mitophagy During Aging in Caenorhabditis elegans. Methods in Molecular Biology, 2017, 1759, 151-160.	0.9	5
76	Monitoring Autophagic Responses in Caenorhabditis elegans. Methods in Enzymology, 2017, 588, 429-444.	1.0	4
77	Autophagy and the endo/exosomal pathways in health and disease. Biotechnology Journal, 2017, 12, 1600175.	3.5	51
78	In Vitro and In Vivo Detection of Mitophagy in Human Cells, C. Elegans , and Mice. Journal of Visualized Experiments, 2017, , .	0.3	20
79	Differential adiponectin signalling couples ER stress with lipid metabolism to modulate ageing in C. elegans. Scientific Reports, 2017, 7, 5115.	3.3	23
80	Modulation of Autophagy by BDNF Underlies Synaptic Plasticity. Cell Metabolism, 2017, 26, 230-242.e5.	16.2	203
81	Mitochondrial biogenesis and clearance: a balancing act. FEBS Journal, 2017, 284, 183-195.	4.7	309
82	Ectopic fat deposition contributes to age-associated pathology in Caenorhabditis elegans. Journal of Lipid Research, 2017, 58, 72-80.	4.2	60
83	In vivo Mitophagy Monitoring in Caenorhabditis elegans to Determine Mitochondrial Homeostasis. Bio-protocol, 2017, 7, .	0.4	9
84	The Role of Autophagy in Aging. , 2017, , 123-138.		4
85	Generation of Caenorhabditis elegans Transgenic Animals by DNA Microinjection. Bio-protocol, 2017, 7,	0.4	25
86	P-body and Stress Granule Quantification in Caenorhabditis elegans. Bio-protocol, 2017, 7, .	0.4	6
87	Protein Synthesis Rate Assessment by Fluorescence Recovery after Photobleaching (FRAP). Bio-protocol, 2017, 7, .	0.4	7
88	Stage dependent nutritional regulation of transgenerational longevity. Nutrition and Healthy Aging, 2016, 4, 47-54.	1.1	6
89	Differential Protein Distribution between the Nucleus and Mitochondria: Implications in Aging. Frontiers in Genetics, 2016, 7, 162.	2.3	33
90	Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology, 2016, 111, 266-282.	4.1	32

#	Article	IF	CITATIONS
91	Mitophagy: In sickness and in health. Molecular and Cellular Oncology, 2016, 3, e1056332.	0.7	40
92	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
93	18α-Glycyrrhetinic Acid Proteasome Activator Decelerates Aging and Alzheimer's Disease Progression in <i>Caenorhabditiselegans</i> and Neuronal Cultures. Antioxidants and Redox Signaling, 2016, 25, 855-869.	5.4	54
94	Intracellular Assessment of ATP Levels in Caenorhabditis elegans. Bio-protocol, 2016, 6, .	0.4	23
95	Measuring Oxygen Consumption Rate in Caenorhabditis elegans. Bio-protocol, 2016, 6, .	0.4	10
96	Imaging ectopic fat deposition in <i>caenorhabditis elegans</i> muscles using nonlinear microscopy. Microscopy Research and Technique, 2015, 78, 523-528.	2.2	4
97	Protein synthesis as an integral quality control mechanism during ageing. Ageing Research Reviews, 2015, 23, 75-89.	10.9	20
98	Unsaturated fatty acids induce nonâ \in canonical autophagy. EMBO Journal, 2015, 34, 1025-1041.	7.8	147
99	Autophagy in the physiology and pathology of the central nervous system. Cell Death and Differentiation, 2015, 22, 398-407.	11.2	169
100	<i>Caenorhabditis elegans</i> as a model for cancer research. Molecular and Cellular Oncology, 2015, 2, e975027.	0.7	35
101	Novel inducers of BECN1-independent autophagy: <i>cis</i> -unsaturated fatty acids. Autophagy, 2015, 11, 575-577.	9.1	13
102	Interfacing mitochondrial biogenesis and elimination to enhance host pathogen defense and longevity. Worm, 2015, 4, e1071763.	1.0	6
103	Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death and Differentiation, 2015, 22, 1399-1401.	11.2	155
104	Coupling mitogenesis and mitophagy for longevity. Autophagy, 2015, 11, 1428-1430.	9.1	67
105	Iron-Starvation-Induced Mitophagy Mediates Lifespan Extension upon Mitochondrial Stress in C.Âelegans. Current Biology, 2015, 25, 1810-1822.	3.9	188
106	Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1412-1423.	1.0	90
107	Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature, 2015, 521, 525-528.	27.8	574
108	Non-linear imaging techniques visualize the lipid profile of C. <i>elegans</i> . Proceedings of SPIE, 2015,	0.8	0

#	Article	IF	CITATIONS
109	20S proteasome activation promotes life span extension and resistance to proteotoxicity in <i>Caenorhabditis elegans</i> . FASEB Journal, 2015, 29, 611-622.	0.5	140
110	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	11.2	811
111	Stress Responses During Ageing: Molecular Pathways Regulating Protein Homeostasis. Methods in Molecular Biology, 2015, 1292, 215-234.	0.9	10
112	A Customized Light Sheet Microscope to Measure Spatio-Temporal Protein Dynamics in Small Model Organisms. PLoS ONE, 2015, 10, e0127869.	2.5	25
113	FAH Domain Containing Protein 1 (FAHD-1) Is Required for Mitochondrial Function and Locomotion Activity in C. elegans. PLoS ONE, 2015, 10, e0134161.	2.5	13
114	Non-linear imaging techniques visualize the lipid profile of C. elegans. , 2015, , .		0
115	Label-Free Imaging of Lipid Depositions in C. elegans Using Third-Harmonic Generation Microscopy. PLoS ONE, 2014, 9, e84431.	2.5	38
116	Longevity pathways and memory aging. Frontiers in Genetics, 2014, 5, 155.	2.3	30
117	Optical projection tomography and light sheet microscopy for imaging in biological specimens a comparison study. , 2014, , .		0
118	Enhanced proteasome degradation extends Caenorhabditis elegans lifespan and alleviates aggregation-related pathologies. Free Radical Biology and Medicine, 2014, 75, S18.	2.9	11
119	Spermidine protects against α-synuclein neurotoxicity. Cell Cycle, 2014, 13, 3903-3908.	2.6	132
120	The nucleotide-binding proteins Nubp1 and Nubp2 are negative regulators of ciliogenesis. Cellular and Molecular Life Sciences, 2014, 71, 517-538.	5.4	31
121	Mitochondrial Biogenesis and Dynamics in Neurodegeneration: A Causative Relationship. Neurochemical Research, 2014, 39, 542-545.	3.3	12
122	Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Experimental Gerontology, 2014, 56, 182-188.	2.8	336
123	Cellular and molecular longevity pathways: the old and the new. Trends in Endocrinology and Metabolism, 2014, 25, 212-223.	7.1	12
124	Necrotic Cell Death in Caenorhabditis elegans. Methods in Enzymology, 2014, 545, 127-155.	1.0	18
125	GPA-14, a Cαi subunit mediates dopaminergic behavioral plasticity in C. elegans. Behavioral and Brain Functions, 2013, 9, 16.	3.3	18
126	Autophagy and ageing: Insights from invertebrate model organisms. Ageing Research Reviews, 2013, 12, 413-428.	10.9	65

#	Article	IF	CITATIONS
127	The contactin RIG-6 mediates neuronal and non-neuronal cell migration in Caenorhabditis elegans. Developmental Biology, 2013, 373, 184-195.	2.0	22
128	The Ca2+/Mn2+ ion-pump PMR1 links elevation of cytosolic Ca2+ levels to α-synuclein toxicity in Parkinson's disease models. Cell Death and Differentiation, 2013, 20, 465-477.	11.2	76
129	Spermidine promotes mating and fertilization efficiency in model organisms. Cell Cycle, 2013, 12, 346-352.	2.6	29
130	High-Throughput and Longitudinal Analysis of Aging and Senescent Decline in Caenorhabditis elegans. Methods in Molecular Biology, 2013, 965, 485-500.	0.9	20
131	Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Experimental Gerontology, 2013, 48, 191-201.	2.8	67
132	Oxidative stress and mitochondrial protein quality control in aging. Journal of Proteomics, 2013, 92, 181-194.	2.4	40
133	Crosstalk between apoptosis, necrosis and autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3448-3459.	4.1	1,099
134	Assessing Aging and Senescent Decline in Caenorhabditis elegans: Cohort Survival Analysis. Methods in Molecular Biology, 2013, 965, 473-484.	0.9	21
135	Anthranilate Fluorescence Marks a Calcium-Propagated Necrotic Wave That Promotes Organismal Death in C. elegans. PLoS Biology, 2013, 11, e1001613.	5.6	123
136	Endonuclease G mediates α-synuclein cytotoxicity during Parkinson's disease. EMBO Journal, 2013, 32, 3041-3054.	7.8	71
137	Metabolic Control by Target of Rapamycin and Autophagy during Ageing - A Mini-Review. Gerontology, 2013, 59, 340-348.	2.8	35
138	Caenorhabditis elegans (Nematode). , 2013, , 404-408.		3
139	Endocytosis and intracellular trafficking contribute to necrotic neurodegeneration inC. elegans. EMBO Journal, 2012, 31, 654-666.	7.8	25
140	Necrotic cell death and neurodegeneration. Worm, 2012, 1, 176-181.	1.0	7
141	Automated Motion Correction for In Vivo Optical Projection Tomography. IEEE Transactions on Medical Imaging, 2012, 31, 1358-1371.	8.9	21
142	Downregulation of lung mitochondrial prohibitin in COPD. Respiratory Medicine, 2012, 106, 954-961.	2.9	39
143	Embryonic and induced pluripotent stem cell differentiation as a tool in neurobiology. Biotechnology Journal, 2012, 7, 1156-1168.	3.5	9
144	Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature, 2012, 490, 213-218.	27.8	161

#	Article	IF	CITATIONS
145	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
146	Calcium homeostasis in aging neurons. Frontiers in Genetics, 2012, 3, 200.	2.3	85
147	Mitophagy in neurodegeneration and aging. Frontiers in Genetics, 2012, 3, 297.	2.3	108
148	Heat shock response and ionstasis: axis against neurodegeneration. Aging, 2012, 4, 856-858.	3.1	4
149	Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. Journal of Cell Biology, 2011, 192, 615-629.	5.2	439
150	Cellular stress response pathways and ageing: intricate molecular relationships. EMBO Journal, 2011, 30, 2520-2531.	7.8	244
151	The role of autophagy in genetic pathways influencing ageing. Biogerontology, 2011, 12, 377-386.	3.9	16
152	Generalized matrix models and AGT correspondence at all genera. Journal of High Energy Physics, 2011, 2011, 1.	4.7	23
153	KIT receptor activation by autocrine and paracrine stem cell factor stimulates growth of merkel cell carcinoma in vitro. Journal of Cellular Physiology, 2011, 226, 1099-1109.	4.1	26
154	Cell tracking in live Caenorhabditis elegans embryos via third harmonic generation imaging microscopy measurements. Journal of Biomedical Optics, 2011, 16, 046019.	2.6	17
155	Longevity-relevant regulation of autophagy at the level of the acetylproteome. Autophagy, 2011, 7, 647-649.	9.1	34
156	Microscopic Optical Projection Tomography In Vivo. PLoS ONE, 2011, 6, e18963.	2.5	50
157	Identification of the M541L sequence variation of the transmembrane KIT domain in Merkel cell carcinoma. Anticancer Research, 2011, 31, 807-11.	1.1	3
158	Modeling human diseases in <i>Caenorhabditis elegans</i> . Biotechnology Journal, 2010, 5, 1261-1276.	3.5	173
159	Autophagy and Longevity: Lessons from C. elegans. Advances in Experimental Medicine and Biology, 2010, 694, 47-60.	1.6	22
160	Necrosis in yeast. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 257-268.	4.9	127
161	Nonâ€apoptotic cell death in <i>Caenorhabditis elegans</i> . Developmental Dynamics, 2010, 239, 1337-1351.	1.8	21
162	Imaging Caenorhabditis elegans embryogenesis by third-harmonic generation microscopy. Micron, 2010, 41, 444-447.	2.2	14

#	Article	IF	CITATIONS
163	Can autophagy promote longevity?. Nature Cell Biology, 2010, 12, 842-846.	10.3	394
164	Autophagy and Aging: Lessons from Progeria Models. Advances in Experimental Medicine and Biology, 2010, 694, 61-68.	1.6	19
165	Regulation of mRNA Translation as a Conserved Mechanism of Longevity Control. Advances in Experimental Medicine and Biology, 2010, 694, 14-29.	1.6	40
166	Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death and Disease, 2010, 1, e10-e10.	6.3	518
167	The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Research, 2010, 38, D346-D354.	14.5	6,188
168	Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography. Biomedical Optics Express, 2010, 1, 87.	2.9	59
169	Proteasome Function Determines Cellular Homeostasis and the Rate of Aging. Advances in Experimental Medicine and Biology, 2010, 694, 38-46.	1.6	42
170	The life span-prolonging effect of Sirtuin-1 is mediated by autophagy. Autophagy, 2010, 6, 186-188.	9.1	127
171	Regulation of Protein Turnover by Longevity Pathways. Advances in Experimental Medicine and Biology, 2010, 694, 69-80.	1.6	33
172	Protein Metabolism and Lifespan in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2010, 694, 81-107.	1.6	2
173	Mitochondrial Protein Quality Control Systems in Aging and Disease. Advances in Experimental Medicine and Biology, 2010, 694, 108-125.	1.6	49
174	Protein Homeostasis in Models of Aging and Age-Related Conformational Disease. Advances in Experimental Medicine and Biology, 2010, 694, 138-159.	1.6	152
175	Post-Translational Modification of Cellular Proteins by Ubiquitin and Ubiquitin-Like Molecules: Role in Cellular Senescence and Aging. Advances in Experimental Medicine and Biology, 2010, 694, 172-196.	1.6	29
176	Protein Metabolism and Homeostasis in Aging. Advances in Experimental Medicine and Biology, 2010, , .	1.6	8
177	Synthesis, Modification and Turnover of Proteins during Aging. Advances in Experimental Medicine and Biology, 2010, 694, 1-13.	1.6	37
178	Roles for SUMO Modification during Senescence. Advances in Experimental Medicine and Biology, 2010, 694, 160-171.	1.6	15
179	Sensory Influence on Homeostasis and Lifespan: Molecules and Circuits. Advances in Experimental Medicine and Biology, 2010, , 197-210.	1.6	10
180	Regulation of Muscle Atrophy in Aging and Disease. Advances in Experimental Medicine and Biology, 2010, 694, 211-233.	1.6	123

#	Article	IF	CITATIONS
181	Confronting Cellular Heterogeneity in Studies of Protein Metabolism and Homeostasis in Aging Research. Advances in Experimental Medicine and Biology, 2010, 694, 234-244.	1.6	6
182	Protein Synthesis and the Antagonistic Pleiotropy Hypothesis of Aging. Advances in Experimental Medicine and Biology, 2010, 694, 30-37.	1.6	31
183	Cell division stage in C. elegans imaged using third harmonic generation microscopy. , 2010, , .		2
184	Molecular Modeling of Mechanosensory Ion Channel Structural and Functional Features. PLoS ONE, 2010, 5, e12814.	2.5	9
185	Opposing function of mitochondrial prohibitin in aging. Aging, 2010, 2, 1004-1011.	3.1	21
186	Caspase-Independent Cell Death Mechanisms in Simple Animal Models. , 2010, , 9-33.		0
187	Aging: Invertebrate Models of Normal Brain Aging. , 2009, , 211-218.		0
188	Cell-Specific Monitoring of Protein Synthesis In Vivo. PLoS ONE, 2009, 4, e4547.	2.5	24
189	2 Common Aging Mechanisms: Energy Metabolism and Longevity in Caenorhabditis elegans. , 2009, , 21-32.		0
190	Autophagy in Caenorhabditis elegans. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1444-1451.	4.1	16
191	The NemaCENETAC initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans. Genetica, 2009, 137, 39-46.	1.1	35
192	Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans. Nature, 2009, 461, 793-797.	27.8	183
193	Autophagy and cell death in model organisms. Cell Death and Differentiation, 2009, 16, 21-30.	11.2	226
194	In vivo imaging of cell morphology and cellular processes in Caenorhabditis elegans, using non-linear phenomena. Micron, 2009, 40, 876-880.	2.2	18
195	SUMOylation and cell signalling. Biotechnology Journal, 2009, 4, 1740-1752.	3.5	51
196	In vivo polarization dependant Second and Third harmonic generation imaging of Caenorhabditis elegans pharyngeal muscles. Laser Physics, 2009, 19, 1475-1479.	1.2	6
197	Prohibitin and mitochondrial biology. Trends in Endocrinology and Metabolism, 2009, 20, 394-401.	7.1	244
198	Induction of autophagy by spermidine promotes longevity. Nature Cell Biology, 2009, 11, 1305-1314.	10.3	1,302

#	Article	IF	CITATIONS
199	Transgenesis in Caenorhabditis elegans. Methods in Molecular Biology, 2009, 561, 21-39.	0.9	23
200	Autophagy mediates pharmacological lifespan extension by spermidineand resveratrol. Aging, 2009, 1, 961-970.	3.1	180
201	Mechanisms of aging and energy metabolism in <i>Caenorhabditis elegans</i> . IUBMB Life, 2008, 60, 315-322.	3.4	19
202	Editorial: Brain Matters. Biotechnology Journal, 2008, 3, 1459-1459.	3.5	0
203	A synaptic DEG/ENaC ion channel mediates learning in C. elegans by facilitating dopamine signalling. EMBO Journal, 2008, 27, 3288-3299.	7.8	79
204	No death without life: vital functions of apoptotic effectors. Cell Death and Differentiation, 2008, 15, 1113-1123.	11.2	221
205	Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 2008, 10, 676-687.	10.3	1,025
206	Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death and Differentiation, 2008, 15, 105-112.	11.2	165
207	In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy. Journal of Microscopy, 2008, 229, 141-150.	1.8	39
208	<i>In vivo</i> imaging of neurodegeneration in <i>Caenorhabditis elegans</i> by third harmonic generation microscopy. Journal of Microscopy, 2008, 232, 270-275.	1.8	19
209	Ageing and the regulation of protein synthesis: a balancing act?. Trends in Cell Biology, 2008, 18, 228-235.	7.9	120
210	In vivo imaging of cellular structures and processes in Caenorhabditis elegans, using non-linear microscopy. , 2008, , .		0
211	Autophagy and Cell Death in Caenorhabditis elegans. Current Pharmaceutical Design, 2008, 14, 97-115.	1.9	20
212	The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy, 2008, 4, 870-873.	9.1	134
213	A dual role of p53 in the control of autophagy. Autophagy, 2008, 4, 810-814.	9.1	296
214	Mechanosensory Transduction in the Nematode Caenorhabditis elegans. , 2008, , 117-145.		0
215	The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Research, 2007, 36, D475-D479.	14.5	293
216	Protein Synthesis and Aging: elF4E and the Soma vs. Germline Distinction. Cell Cycle, 2007, 6, 1168-1171.	2.6	27

#	Article	IF	CITATIONS
217	Mechanosensitive Ion Channels in Caenorhabditis elegans. Current Topics in Membranes, 2007, 59, 49-79.	0.9	3
218	In vivo imaging of anatomical features of the nematode Caenorhabditis elegans using non-linear (TPEF-SHG-THG) microscopy. , 2007, , .		3
219	Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biology, 2007, 8, R194.	9.6	194
220	Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO Journal, 2007, 26, 2527-2539.	7.8	1,003
221	elF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature, 2007, 445, 922-926.	27.8	311
222	Nemo: a computational tool for analyzing nematode locomotion. BMC Neuroscience, 2007, 8, 86.	1.9	63
223	Cardiomyocyte necrosis: Alternative mechanisms, effective interventions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 480-482.	4.1	19
224	Non-developmentally programmed cell death in Caenorhabditis elegans. Seminars in Cancer Biology, 2007, 17, 122-133.	9.6	22
225	Protein Synthesis Is a Novel Determinant of Aging in <i>Caenorhabditis elegans</i> . Annals of the New York Academy of Sciences, 2007, 1119, 289-295.	3.8	51
226	Editorial: Diseases of the brain – neuronal function and dysfunction. Biotechnology Journal, 2007, 2, 518-519.	3.5	0
227	The Role of DEG/ENaC Ion Channels in Sensory Mechanotransduction. , 2007, , 3-31.		2
228	Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. Journal of Cell Biology, 2006, 173, 231-239.	5.2	97
229	Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. Insect Molecular Biology, 2006, 15, 95-103.	2.0	37
230	The role of synaptic ion channels in synaptic plasticity. EMBO Reports, 2006, 7, 1104-1110.	4.5	178
231	Caenorhabditis elegans: A versatile platform for drug discovery. Biotechnology Journal, 2006, 1, 1405-1418.	3.5	142
232	Signaling pathways regulating protein synthesis during ageing. Experimental Gerontology, 2006, 41, 1020-1025.	2.8	22
233	The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Research, 2006, 34, D332-D334.	14.5	220
234	First identification of a phosphorylcholine-substituted protein from Caenorhabditis elegans: isolation and characterization of the aspartyl protease ASP-6. Biological Chemistry, 2006, 387, 1487-1493.	2.5	11

#	Article	IF	CITATIONS
235	The Vacuolar H+-ATPase Mediates Intracellular Acidification Required for Neurodegeneration in C. elegans. Current Biology, 2005, 15, 1249-1254.	3.9	97
236	Neurodegenerative conditions associated with ageing: a molecular interplay?. Mechanisms of Ageing and Development, 2005, 126, 23-33.	4.6	24
237	Imaging ofCaenorhabditis eleganssamples and sub-cellular localization of new generation photosensitizers for photodynamic therapy, using non-linear microscopy. Journal Physics D: Applied Physics, 2005, 38, 2625-2632.	2.8	6
238	Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence. Journal of Biomedical Optics, 2005, 10, 024015.	2.6	18
239	Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Letters, 2005, 579, 3287-3296.	2.8	119
240	Death by Misadventure. , 2005, , .		0
241	Genetic Models of Mechanotransduction: The Nematode <i>Caenorhabditis elegans</i> . Physiological Reviews, 2004, 84, 1097-1153.	28.8	114
242	The biochemistry of neuronal necrosis: rogue biology?. Nature Reviews Neuroscience, 2003, 4, 672-684.	10.2	164
243	Calcium-dependent and aspartyl proteases in neurodegeneration and ageing in C. elegans. Ageing Research Reviews, 2003, 2, 451-471.	10.9	16
244	Induction of RNA interference in Caenorhabditis elegans by RNAs derived from plants exhibiting post-transcriptional gene silencing. Nucleic Acids Research, 2002, 30, 1688-1694.	14.5	33
245	More neuropeptides in C. elegans. Genome Biology, 2002, 3, 1.	8.8	0
246	Eating less to live longer. Genome Biology, 2002, 3, 1.	8.8	5
247	Interfering with RNA interference. Genome Biology, 2002, 3, 1.	8.8	1
248	Caloric restriction and lifespan: a role for protein turnover?. Mechanisms of Ageing and Development, 2002, 123, 215-229.	4.6	72
249	Ageing research in Greece. Experimental Gerontology, 2002, 37, 735-747.	2.8	2
250	Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature, 2002, 419, 939-944.	27.8	273
251	Death by necrosis. EMBO Reports, 2002, 3, 604-609.	4.5	128
252	Necrotic Cell Death in C. elegans Requires the Function of Calreticulin and Regulators of Ca2+ Release from the Endoplasmic Reticulum. Neuron, 2001, 31, 957-971.	8.1	261

#	Article	IF	CITATIONS
253	Execution of Necrotic-Like Cell Death in <i>Caenorhabditis elegans</i> Requires Cathepsin D Activity. Scientific World Journal, The, 2001, 1, 139-139.	2.1	1
254	Cell/Neuron Degeneration. , 2001, , 313-318.		1
255	Mechanotransduction in Caenorhabditis elegans: The Role of DEG/ENaC Ion Channels. Cell Biochemistry and Biophysics, 2001, 35, 01-18.	1.8	37
256	Structural and functional features of the intracellular amino terminus of DEG/ENaC ion channels. Current Biology, 2001, 11, R205-R208.	3.9	15
257	Cell/Neuron Degeneration. , 2001, , 488-492.		1
258	Degenerins. Annals of the New York Academy of Sciences, 2001, 940, 28-41.	3.8	40
259	Degenerins. At the core of the metazoan mechanotransducer?. Annals of the New York Academy of Sciences, 2001, 940, 28-41.	3.8	14
260	Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genetics, 2000, 24, 180-183.	21.4	409
261	Closing in on a mammalian touch receptor. Nature Neuroscience, 2000, 3, 1232-1234.	14.8	6
262	Acquisition of a potential marker for insect transformation: isolation of a novel alcohol dehydrogenase gene from Bactrocera oleae by functional complementation in yeast. Molecular Genetics and Genomics, 2000, 263, 90-95.	2.4	12
263	<i>Caenorhabditis Elegans</i> Degenerins and Vertebrate Enac Ion Channels Contain an Extracellular Domain Related to Venom Neurotoxins. Journal of Neurogenetics, 2000, 13, 257-264.	1.4	23
264	The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends in Biochemical Sciences, 1999, 24, 425-427.	7.5	223
265	UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes and Development, 1999, 13, 2774-2786.	5.9	115
266	MOLECULAR MODELING OF MECHANOTRANSDUCTION IN THE NEMATODECAENORHABDITIS ELEGANS. Annual Review of Physiology, 1997, 59, 659-689.	13.1	231
267	unc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion. Neuron, 1997, 18, 107-119.	8.1	195
268	Genetically targeted cell disruption in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13128-13133.	7.1	68
269	The DNA target sequence influences the dependence of the yeast transcriptional activator Gcn4 on co-factors. Molecular Genetics and Genomics, 1997, 253, 766-769.	2.4	4
270	Gene overexpression reveals alternative mechanisms that induce GCN4 mRNA translation. Gene, 1996, 179, 271-277.	2.2	8

#	Article	IF	CITATIONS
271	Genetic evidence for functional specificity of the yeast GCN2 kinase. Molecular Genetics and Genomics, 1996, 251, 613-618.	2.4	5
272	Sequence analysis of a 40·7 kb segment from the left arm of yeast chromosome X reveals 14 known genes and 13 new open reading frames including homologues of genes clustered on the right arm of chromosome XI. Yeast, 1996, 12, 787-797.	1.7	6
273	Transcriptional interference caused by GCN4 overexpression reveals multiple interactions mediating transcriptional activation. Molecular Genetics and Genomics, 1995, 247, 571-578.	2.4	20
274	Amplification and non-isotopic detection of specific DNA sequences in a single microtitre well. Serodiagnosis and Immunotherapy in Infectious Disease, 1995, 7, 202-206.	0.2	1
275	A recombinatorial method useful for cloning dominant alleles inSaccharomyces cerevisiae. Nucleic Acids Research, 1995, 23, 537-538.	14.5	1
276	A Transient GCN4 mRNA Destabilization Follows GCN4 Translational Derepression. Journal of Biological Chemistry, 1995, 270, 17317-17320.	3.4	4
277	Detection of anti-Rev antibodies in human immunodeficiency virus type-1 patients using a recombinant 18kD Rev protein. Serodiagnosis and Immunotherapy in Infectious Disease, 1993, 5, 117-121.	0.2	2
278	Monitoring protein synthesis by fluorescence recovery after photobleaching (FRAP) in vivo. Protocol Exchange, 0, , .	0.3	0
279	In vivo imaging of mitophagy in Caenorhabditis elegans. Protocol Exchange, 0, , .	0.3	0