List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4909626/publications.pdf Version: 2024-02-01

ALLAN C SPRADLING

#	Article	IF	CITATIONS
1	<i>Drosophila</i> renal stem cells enhance fitness by delayed remodeling of adult Malpighian tubules. Science Advances, 2022, 8, .	10.3	0
2	FMRP-dependent production of large dosage-sensitive proteins is highly conserved. Genetics, 2022, 221, .	2.9	8
3	High contiguity de novo genome assembly and DNA modification analyses for the fungus fly, Sciara coprophila, using single-molecule sequencing. BMC Genomics, 2021, 22, 643.	2.8	17
4	Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20015-20026.	7.1	137
5	An abundant quiescent stem cell population in Drosophila Malpighian tubules protects principal cells from kidney stones. ELife, 2020, 9, .	6.0	25
6	Differentiating Drosophila female germ cells initiate Polycomb silencing by regulating PRC2-interacting proteins. ELife, 2020, 9, .	6.0	25
7	Prolonged ovarian storage of mature Drosophila oocytes dramatically increases meiotic spindle instability. ELife, 2019, 8, .	6.0	20
8	An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. ELife, 2019, 8, .	6.0	105
9	Efficient Expression of Genes in the <i>Drosophila</i> Germline Using a UAS Promoter Free of Interference by Hsp70 piRNAs. Genetics, 2018, 209, 381-387.	2.9	62
10	Dietary Lipids Modulate Notch Signaling and Influence Adult Intestinal Development and Metabolism in Drosophila. Developmental Cell, 2018, 47, 98-111.e5.	7.0	62
11	A gene-specific T2A-GAL4 library for Drosophila. ELife, 2018, 7, .	6.0	203
12	Fragile X mental retardation 1 gene enhances the translation of large autism-related proteins. Science, 2018, 361, 709-712.	12.6	130
13	Identification of Genes Mediating <i>Drosophila</i> Follicle Cell Progenitor Differentiation by Screening for Modifiers of GAL4::UAS Variegation. G3: Genes, Genomes, Genetics, 2017, 7, 309-318.	1.8	11
14	The role of metabolic states in development and disease. Current Opinion in Genetics and Development, 2017, 45, 58-68.	3.3	30
15	Single-Cell Lineage Analysis of Oogenesis in Mice. Methods in Molecular Biology, 2017, 1463, 125-138.	0.9	5
16	Polytene Chromosome Structure and Somatic Genome Instability. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 293-304.	1.1	6
17	Opinion: NIH must support broadly focused basic research. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8340-8342.	7.1	3
18	The Carnegie Department of Embryology at 100. Current Topics in Developmental Biology, 2016, 117, 405-415.	2.2	0

#	Article	IF	CITATIONS
19	Electron Transport Chain Remodeling by GSK3 during Oogenesis Connects Nutrient State to Reproduction. Cell, 2016, 164, 420-432.	28.9	119
20	Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science, 2016, 352, 95-99.	12.6	232
21	Wound-Induced Polyploidization: Regulation by Hippo and JNK Signaling and Conservation in Mammals. PLoS ONE, 2016, 11, e0151251.	2.5	56
22	A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. ELife, 2015, 4, .	6.0	320
23	Matrix Metalloproteinase 2 Is Required for Ovulation and Corpus Luteum Formation in Drosophila. PLoS Genetics, 2015, 11, e1004989.	3.5	68
24	Steroid Signaling Establishes a Female Metabolic State and Regulates SREBP to Control Oocyte Lipid Accumulation. Current Biology, 2015, 25, 993-1004.	3.9	158
25	A genetic toolkit for tagging intronic MiMIC containing genes. ELife, 2015, 4, .	6.0	134
26	The progenitor state is maintained by <i>lysine-specific demethylase 1</i> -mediated epigenetic plasticity during <i>Drosophila</i> follicle cell development. Genes and Development, 2014, 28, 2739-2749.	5.9	24
27	Incomplete replication generates somatic DNA alterations within <i>Drosophila</i> polytene salivary gland cells. Genes and Development, 2014, 28, 1840-1855.	5.9	72
28	Polyploidization and Cell Fusion Contribute to Wound Healing in the Adult Drosophila Epithelium. Current Biology, 2013, 23, 2224-2232.	3.9	174
29	Mouse primordial germ cells produce cysts that partially fragment prior to meiosis. Development (Cambridge), 2013, 140, 2075-2081.	2.5	158
30	Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8585-8590.	7.1	156
31	Ovulation in Drosophila is controlled by secretory cells of the female reproductive tract. ELife, 2013, 2, e00415.	6.0	84
32	Physiological and stem cell compartmentalization within the Drosophila midgut. ELife, 2013, 2, e00886.	6.0	218
33	Steroid Signaling within Drosophila Ovarian Epithelial Cells Sex-Specifically Modulates Early Germ Cell Development and Meiotic Entry. PLoS ONE, 2012, 7, e46109.	2.5	70
34	NR5A Nuclear Receptor Hr39 Controls Three-Cell Secretory Unit Formation in Drosophila Female Reproductive Glands. Current Biology, 2012, 22, 862-871.	3.9	30
35	Female Reproductive Glands Play Essential Roles in Reproduction That May Have Been Conserved During Evolution Biology of Reproduction, 2012, 87, 347-347.	2.7	4
36	Germline Stem Cells. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002642-a002642.	5.5	240

ALLAN C SPRADLING

#	Article	IF	CITATIONS
37	MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nature Methods, 2011, 8, 737-743.	19.0	620
38	The <i>Drosophila</i> Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities. Genetics, 2011, 188, 731-743.	2.9	330
39	Drosophila Stem Cell Niches: A Decade of Discovery Suggests a Unified View of Stem Cell Regulation. Developmental Cell, 2011, 21, 159-171.	7.0	277
40	Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the <i>Drosophila</i> ovary. Development (Cambridge), 2011, 138, 2207-2215.	2.5	153
41	Drosophila Eggshell Production: Identification of New Genes and Coordination by Pxt. PLoS ONE, 2011, 6, e19943.	2.5	106
42	The livingâ€ŧissue microscope: the importance of studying stem cells in their natural, undisturbed microenvironment. Journal of Pathology, 2011, 225, 161-162.	4.5	3
43	<i>Drosophila P</i> elements preferentially transpose to replication origins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15948-15953.	7.1	93
44	Regulation of Epithelial Stem Cell Replacement and Follicle Formation in the Drosophila Ovary. Genetics, 2010, 184, 503-515.	2.9	88
45	Epigenetic stability increases extensively during <i>Drosophila</i> follicle stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7389-7394.	7.1	49
46	Error-prone polyploid mitosis during normal <i>Drosophila</i> development. Genes and Development, 2010, 24, 2294-2302.	5.9	91
47	<i>Drosophila</i> Stem Cells Share a Common Requirement for the Histone H2B Ubiquitin Protease Scrawny. Science, 2009, 323, 248-251.	12.6	113
48	Transcriptional Silencing and Reactivation in Transgenic Zebrafish. Genetics, 2009, 182, 747-755.	2.9	149
49	<i>clueless</i> , a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with <i>parkin</i> . DMM Disease Models and Mechanisms, 2009, 2, 490-499.	2.4	85
50	The Drosophila Hindgut Lacks Constitutively Active Adult Stem Cells but Proliferates in Response to Tissue Damage. Cell Stem Cell, 2009, 5, 290-297.	11.1	96
51	Makeshift sperm production. Nature, 2008, 456, 583-585.	27.8	3
52	New components of the Drosophila fusome suggest it plays novel roles in signaling and transport. Developmental Biology, 2008, 317, 59-71.	2.0	97
53	Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell, 2008, 132, 598-611.	28.9	1,706
54	Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 187-192.	7.1	202

#	Article	IF	CITATIONS
55	The Carnegie Protein Trap Library: A Versatile Tool for Drosophila Developmental Studies. Genetics, 2007, 175, 1505-1531.	2.9	529
56	DEVELOPMENTAL BIOLOGY: The Mother of All Stem Cells?. Science, 2007, 315, 469-470.	12.6	18
57	An Epithelial Niche in the Drosophila Ovary Undergoes Long-Range Stem Cell Replacement. Cell Stem Cell, 2007, 1, 277-285.	11.1	166
58	Male and Female Drosophila Germline Stem Cells: Two Versions of Immortality. Science, 2007, 316, 402-404.	12.6	420
59	Multipotent <i>Drosophila</i> Intestinal Stem Cells Specify Daughter Cell Fates by Differential Notch Signaling. Science, 2007, 315, 988-992.	12.6	582
60	Searching Chromatin for Stem Cell Identity. Cell, 2006, 125, 233-236.	28.9	83
61	Breaking out of the mold: diversity within adult stem cells and their niches. Current Opinion in Genetics and Development, 2006, 16, 463-468.	3.3	51
62	The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature, 2006, 439, 470-474.	27.8	947
63	The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes and Development, 2006, 20, 977-989.	5.9	63
64	Drosophila Poly(ADP-Ribose) Glycohydrolase Mediates Chromatin Structure and SIR2-Dependent Silencing. Genetics, 2006, 172, 363-371.	2.9	53
65	New Roles for Model Genetic Organisms in Understanding and Treating Human Disease: Report From The 2006 Genetics Society of America Meeting. Genetics, 2006, 172, 2025-2032.	2.9	35
66	Learning the Common Language of Genetics. Genetics, 2006, 174, 1-3.	2.9	7
67	The Drosophila Ovarian and Testis Stem Cell Niches: Similar Somatic Stem Cells and Signals. Developmental Cell, 2005, 9, 501-510.	7.0	284
68	The expression profile of purified Drosophila germline stem cells. Developmental Biology, 2005, 283, 486-502.	2.0	124
69	Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature, 2004, 428, 564-569.	27.8	320
70	More like a man. Nature, 2004, 428, 133-134.	27.8	10
71	The stem cell niche: theme and variations. Current Opinion in Cell Biology, 2004, 16, 693-699.	5.4	316
72	The BDGP Gene Disruption Project. Genetics, 2004, 167, 761-781.	2.9	774

5

#	Article	IF	CITATIONS
73	α-Endosulfine, a potential regulator of insulin secretion, is required for adult tissue growth control in Drosophila. Developmental Biology, 2004, 266, 310-321.	2.0	37
74	A Balbiani body and the fusome mediate mitochondrial inheritance duringDrosophilaoogenesis. Development (Cambridge), 2003, 130, 1579-1590.	2.5	277
75	An empty <i>Drosophila</i> stem cell niche reactivates the proliferation of ectopic cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4633-4638.	7.1	264
76	Chromatin Loosening by Poly(ADP)-Ribose Polymerase (PARP) at Drosophila Puff Loci. Science, 2003, 299, 560-562.	12.6	426
77	Regulation of Chromatin Structure and Gene Activity by Poly(ADP-Ribose) Polymerases. Current Topics in Developmental Biology, 2003, 56, 55-83.	2.2	53
78	The <i>Drosophila</i> heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes and Development, 2002, 16, 2108-2119.	5.9	187
79	Stem Cells and Their Progeny Respond to Nutritional Changes during Drosophila Oogenesis. Developmental Biology, 2001, 231, 265-278.	2.0	555
80	Mouse Ovarian Germ Cell Cysts Undergo Programmed Breakdown to Form Primordial Follicles. Developmental Biology, 2001, 234, 339-351.	2.0	600
81	Reflections on the Drosophila genome. Functional and Integrative Genomics, 2001, 1, 221-222.	3.5	1
82	The nuclear location and chromatin organization of active chorion amplification origins. Chromosoma, 2001, 110, 159-172.	2.2	27
83	Stem cells find their niche. Nature, 2001, 414, 98-104.	27.8	1,303
84	The Genome Sequence of <i>Drosophila melanogaster</i> . Science, 2000, 287, 2185-2195.	12.6	5,566
85	Cyclin A Associates with the Fusome during Germline Cyst Formation in the Drosophila Ovary. Developmental Biology, 2000, 218, 53-63.	2.0	92
86	A Niche Maintaining Germ Line Stem Cells in the Drosophila Ovary. Science, 2000, 290, 328-330.	12.6	738
87	Germline cysts: a conserved phase of germ cell development?. Trends in Cell Biology, 1999, 9, 257-262.	7.9	230
88	Chorion Gene Amplification in Drosophila: A Model for Metazoan Origins of DNA Replication and S-Phase Control. Methods, 1999, 18, 407-417.	3.8	76
89	The Berkeley Drosophila Genome Project Gene Disruption Project: Single P-Element Insertions Mutating 25% of Vital Drosophila Genes. Genetics, 1999, 153, 135-177.	2.9	731
90	decapentaplegic Is Essential for the Maintenance and Division of Germline Stem Cells in the Drosophila Ovary. Cell, 1998, 94, 251-260.	28.9	617

#	Article	IF	CITATIONS
91	The Carnegie Institution of Washington, Department of Embryology. Molecular Medicine, 1997, 3, 417-419.	4.4	3
92	Fusome asymmetry and oocyte determination inDrosophila. Genesis, 1995, 16, 6-12.	2.1	203
93	Unusual properties of genomic DNA molecules spanning the euchromatic – heterochromatic junction of a Drosophila minichromosome. Nucleic Acids Research, 1994, 22, 5068-5075.	14.5	22
94	Germline Stem Cell Division and Egg Chamber Development in Transplanted Drosophila Germaria. Developmental Biology, 1993, 159, 140-152.	2.0	219
95	slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila CEBP. Cell, 1992, 71, 51-62.	28.9	323
96	Replication forks are not found in a Drosophila minichromosome demonstrating a gradient of polytenization. Chromosoma, 1992, 102, 15-19.	2.2	36
97	Reduced DNA polytenization of a minichromosome region undergoing position-effect variegation in Drosophila. Cell, 1990, 63, 97-107.	28.9	158
98	Controlling P element insertional mutagenesis. Trends in Genetics, 1988, 4, 254-258.	6.7	75
99	Replication and expression of an X-linked cluster of Drosophila chorion genes. Developmental Biology, 1986, 117, 294-305.	2.0	52
100	Developmentally regulated expression of Drosophila chorion genes introduced at diverse chromosomal positions. Journal of Molecular Biology, 1986, 187, 33-45.	4.2	55
101	DNA sequence of a 3.8 kilobase pair region controlling Drosophila chorion gene amplification. Chromosoma, 1985, 92, 136-142.	2.2	83
102	Localization of a cis-acting element responsible for the developmentally regulated amplification of drosophila chorion genes. Cell, 1984, 38, 45-54.	28.9	109
103	The effect of chromosomal position on the expression of the drosophila xanthine dehydrogenase gene. Cell, 1983, 34, 47-57.	28.9	433
104	Vectors for P element-mediated gene transfer inDrosophila. Nucleic Acids Research, 1983, 11, 6341-6351.	14.5	576
105	Two clusters of genes for major chorion proteins of Drosophila melanogaster. Cell, 1980, 19, 905-914.	28.9	122
106	Identification and genetic localization of mRNAs from ovarian follicle cells of Drosophila melanogaster. Cell, 1979, 16, 589-598.	28.9	117
107	Drosophila bearing the ocelliless mutation underproduce two major chorion proteins both of which map near this gene. Cell, 1979, 16, 609-616.	28.9	39
108	Messenger RNA in heat-shocked Drosophila cells. Journal of Molecular Biology, 1977, 109, 559-587.	4.2	297

#	Article	IF	CITATIONS
109	Chapter 12 Methods with Insect Cells in Suspension Culture II. Drosophila melanogaster. Methods in Cell Biology, 1975, 10, 195-208.	1.1	41
110	Two very different components of messenger RNA in an insect cell line. Cell, 1975, 4, 131-137.	28.9	104
111	The messenger-like poly(A)-containing RNA species from the mitochondria of mammals and insects. Cell, 1974, 1, 31-35.	28.9	67