David K Ryugo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4909411/publications.pdf Version: 2024-02-01

	34105	51608
8,642	52	86
citations	h-index	g-index
132	132	3820
docs citations	times ranked	citing authors
	citations 132	8,64252citationsh-index132132

#	Article	IF	CITATIONS
1	Idiopathic sudden sensorineural hearing loss: A critique on corticosteroid therapy. Hearing Research, 2022, 422, 108565.	2.0	8
2	Projections from the ventral nucleus of the lateral lemniscus to the cochlea in the mouse. Journal of Comparative Neurology, 2021, 529, 2995-3012.	1.6	5
3	Diabetes mellitus and hearing loss: A review. Ageing Research Reviews, 2021, 71, 101423.	10.9	46
4	Immunocytochemical Localization of Olfactory-signaling Molecules in Human and Rat Spermatozoa. Journal of Histochemistry and Cytochemistry, 2020, 68, 491-513.	2.5	5
5	Regulation of auditory plasticity during critical periods and following hearing loss. Hearing Research, 2020, 397, 107976.	2.0	27
6	Expression and Localization of Kv1.1 and Kv3.1b Potassium Channels in the Cochlear Nucleus and Inferior Colliculus after Long-Term Auditory Deafferentation. Brain Sciences, 2020, 10, 35.	2.3	6
7	Hidden hearing loss and endbulbs of Held: Evidence for central pathology before detection of ABR threshold increases. Hearing Research, 2018, 364, 104-117.	2.0	26
8	Cytosolic Recognition of RNA Drives the Immune Response to Heterologous Erythrocytes. Cell Reports, 2017, 21, 1624-1638.	6.4	25
9	Descending projections from the inferior colliculus to the dorsal cochlear nucleus are excitatory. Journal of Comparative Neurology, 2017, 525, 773-793.	1.6	12
10	Descending projections from the inferior colliculus to medial olivocochlear efferents: Mice with normal hearing, early onset hearing loss, and congenital deafness. Hearing Research, 2017, 343, 34-49.	2.0	30
11	The effect of progressive hearing loss on the morphology of endbulbs of Held and bushy cells. Hearing Research, 2017, 343, 14-33.	2.0	15
12	Giant Synaptic Terminals: Endbulbs and Calyces of the Auditory System \hat{a} , 2017, , .		0
13	Central Projections of Spiral Ganglion Neurons. Springer Handbook of Auditory Research, 2016, , 157-190.	0.7	9
14	Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss. Brain Research, 2015, 1605, 22-30.	2.2	20
15	Auditory neuroplasticity, hearing loss and cochlear implants. Cell and Tissue Research, 2015, 361, 251-269.	2.9	19
16	Tonotopic organization of vertical cells in the dorsal cochlear nucleus of the CBA/J mouse. Journal of Comparative Neurology, 2014, 522, 937-949.	1.6	22
17	Endogenous Retrovirus Insertion in the <i>KIT</i> Oncogene Determines <i>White</i> and <i>White spotting</i> in Domestic Cats. G3: Genes, Genomes, Genetics, 2014, 4, 1881-1891.	1.8	66
18	From Degenerative Debris to Neuronal Tracing: An Anterograde View of Auditory Circuits. Springer Handbook of Auditory Research, 2014, , 513-531.	0.7	0

#	Article	IF	CITATIONS
19	3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. Journal of Comparative Neurology, 2013, 521, 1510-1532.	1.6	56
20	Synaptic Organization and Plasticity in the Auditory System of the Deaf White Cat. Springer Handbook of Auditory Research, 2013, , 83-128.	0.7	2
21	Morphological Characterization of Bushy Cells and Their Inputs in the Laboratory Mouse (Mus) Tj ETQq1 1 0.784	4314 rgBT 2.5	- /Overlock 10 46
22	Preparation of an Awake Mouse for Recording Neural Responses and Injecting Tracers. Journal of Visualized Experiments, 2012, , .	0.3	18
23	Feline Deafness. Veterinary Clinics of North America - Small Animal Practice, 2012, 42, 1179-1207.	1.5	28
24	Efferent synapses return to inner hair cells in the aging cochlea. Neurobiology of Aging, 2012, 33, 2892-2902.	3.1	62
25	Auditory System. , 2012, , 607-645.		14
26	Cochlear Implantation, Synaptic Plasticity and Auditory Function. , 2012, , .		0
27	Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlearâ€implanted cats. Journal of Comparative Neurology, 2012, 520, 2202-2217.	1.6	37
28	Auditory and Vestibular Efferents. Springer Handbook of Auditory Research, 2011, , .	0.7	25
29	Synaptic morphology and the influence of auditory experience. Hearing Research, 2011, 279, 118-130.	2.0	42
30	The spiral ganglion: Connecting the peripheral and central auditory systems. Hearing Research, 2011, 278, 2-20.	2.0	167
31	Age-related neuronal loss in the cochlea is not delayed by synaptic modulation. Neurobiology of Aging, 2011, 32, 2321.e13-2321.e23.	3.1	16
32	Descending Connections of Auditory Cortex to the Midbrain and Brain Stem. , 2011, , 189-208.		55
33	Introduction to Efferent Systems. Springer Handbook of Auditory Research, 2011, , 1-15.	0.7	4
34	The Effect of Cochlear-Implant-Mediated Electrical Stimulation on Spiral Ganglion Cells in Congenitally Deaf White Cats. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 587-603.	1.8	27
35	Synaptic plasticity after chemical deafening and electrical stimulation of the auditory nerve in cats. Journal of Comparative Neurology, 2010, 518, 1046-1063.	1.6	38
36	Bilateral effects of unilateral cochlear implantation in congenitally deaf cats. Journal of Comparative Neurology, 2010, 518, 2382-2404.	1.6	41

#	Article	IF	CITATIONS
37	Postnatal development of the endbulb of Held in congenitally deaf cats. Frontiers in Neuroanatomy, 2010, 4, 19.	1.7	30
38	Neural Coding of Interaural Time Differences with Bilateral Cochlear Implants: Effects of Congenital Deafness. Journal of Neuroscience, 2010, 30, 14068-14079.	3.6	79
39	Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry. Journal of Comparative Neurology, 2009, 514, 297-309.	1.6	136
40	Long-Term, Stable Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors Grafted into the Adult Mammalian Neostriatum. Stem Cells, 2009, 27, 2414-2426.	3.2	52
41	Projections of low spontaneous rate, high threshold auditory nerve fibers to the small cell cap of the cochlear nucleus in cats. Neuroscience, 2008, 154, 114-126.	2.3	39
42	Revealing the molecular layer of the primate dorsal cochlear nucleus. Neuroscience, 2008, 154, 99-113.	2.3	45
43	Four Independent Mutations in the Feline Fibroblast Growth Factor 5 Gene Determine the Long-Haired Phenotype in Domestic Cats. Journal of Heredity, 2007, 98, 555-566.	2.4	71
44	Projections of the lateral reticular nucleus to the cochlear nucleus in rats. Journal of Comparative Neurology, 2007, 504, 583-598.	1.6	25
45	Hearing molecules: contributions from genetic deafness. Cellular and Molecular Life Sciences, 2007, 64, 566-580.	5.4	28
46	Postnatal development of a large auditory nerve terminal: The endbulb of Held in cats. Hearing Research, 2006, 216-217, 100-115.	2.0	38
47	Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. Hearing Research, 2006, 221, 104-118.	2.0	136
48	A modified Golgi staining protocol for use in the human brain stem and cerebellum. Journal of Neuroscience Methods, 2006, 150, 90-95.	2.5	39
49	Efficient quantification of afferent cochlear ultrastructure using design-based stereology. Journal of Neuroscience Methods, 2006, 150, 150-158.	2.5	12
50	Structural and functional classes of multipolar cells in the ventral cochlear nucleus. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 331-344.	2.0	46
51	Projections from auditory cortex to cochlear nucleus: A comparative analysis of rat and mouse. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 397-408.	2.0	40
52	Projections of the second cervical dorsal root ganglion to the cochlear nucleus in rats. Journal of Comparative Neurology, 2006, 496, 335-348.	1.6	68
53	Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. Journal of Comparative Neurology, 2005, 484, 191-205.	1.6	86
54	Restoration of Auditory Nerve Synapses in Cats by Cochlear Implants. Science, 2005, 310, 1490-1492.	12.6	129

#	Article	IF	CITATIONS
55	PHR1, a PH Domain-Containing Protein Expressed in Primary Sensory Neurons. Molecular and Cellular Biology, 2004, 24, 9137-9151.	2.3	16
56	Two types of afferent terminals innervate cochlear inner hair cells in C57BL/6J mice. Brain Research, 2004, 1016, 182-194.	2.2	37
57	An Animal Model for Cochlear Implants. JAMA Otolaryngology, 2004, 130, 499.	1.2	26
58	Effects of congenital deafness in the cochlear nuclei of Shaker-2 mice: An ultrastructural analysis of synapse morphology in the endbulbs of Held. Journal of Neurocytology, 2003, 32, 229-243.	1.5	53
59	The source of corticocollicular and corticobulbar projections in area Te1 of the rat. Experimental Brain Research, 2003, 153, 461-466.	1.5	76
60	Multimodal inputs to the granule cell domain of the cochlear nucleus. Experimental Brain Research, 2003, 153, 477-485.	1.5	77
61	Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve. Experimental Brain Research, 2003, 153, 452-460.	1.5	33
62	Ultrastructural examination of the somatic innervation of ventrotubercular cells in the rat. Journal of Comparative Neurology, 2003, 459, 77-89.	1.6	6
63	Axonal pathways to the lateral superior olive labeled with biotinylated dextran amine injections in the dorsal cochlear nucleus of rats. Journal of Comparative Neurology, 2003, 461, 452-465.	1.6	55
64	Separate forms of pathology in the cochlea of congenitally deaf white cats. Hearing Research, 2003, 181, 73-84.	2.0	30
65	The functional age of hearing loss in a mouse model of presbycusis. II. Neuroanatomical correlates. Hearing Research, 2003, 183, 29-36.	2.0	28
66	Primary innervation of the avian and mammalian cochlear nucleus. Brain Research Bulletin, 2003, 60, 435-456.	3.0	121
67	Commissural glycinergic inhibition of bushy and stellate cells in the anteroventral cochlear nucleus. NeuroReport, 2002, 13, 555-558.	1.2	35
68	The cellular origin of corticofugal projections to the superior olivary complex in the rat. Brain Research, 2002, 925, 28-41.	2.2	56
69	The Effects of Congenital Deafness on Auditory Nerve Synapses: Type I and Type II Multipolar Cells in the Anteroventral Cochlear Nucleus of Cats. JARO - Journal of the Association for Research in Otolaryngology, 2002, 3, 403-417.	1.8	25
70	Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the <i>Barhl1</i> homeobox gene. Development (Cambridge), 2002, 129, 3523-3532.	2.5	86
71	Progressive Cerebellar, Auditory, and Esophageal Dysfunction Caused by Targeted Disruption of the <i>frizzled </i> 4 Gene. Journal of Neuroscience, 2001, 21, 4761-4771.	3.6	135
72	Projections of the pontine nuclei to the cochlear nucleus in rats. Journal of Comparative Neurology, 2001, 436, 290-303.	1.6	54

#	Article	IF	CITATIONS
73	Development of Primary Axosomatic Endings in the Anteroventral Cochlear Nucleus of Mice. JARO - Journal of the Association for Research in Otolaryngology, 2000, 1, 103-119.	1.8	85
74	The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hearing Research, 2000, 147, 160-174.	2.0	66
75	Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus. Journal of Comparative Neurology, 1999, 408, 515-531.	1.6	100
76	Inhibitory synaptic interactions between cochlear nuclei. NeuroReport, 1999, 10, 1913-1917.	1.2	24
77	Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus. Journal of Comparative Neurology, 1999, 408, 515-531.	1.6	4
78	Single unit recordings in the auditory nerve of congenitally deaf white cats: Morphological correlates in the cochlea and cochlear nucleus. Journal of Comparative Neurology, 1998, 397, 532-548.	1.6	97
79	Ultrastructural changes in primary endings of deaf white catsâ~†, â~†â~†, â~Second Place—Resident Basic Sci Award 1996. Otolaryngology - Head and Neck Surgery, 1997, 116, 286-293.	ence 1.9	5
80	Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of held. , 1997, 385, 230-244.		137
81	Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. Journal of Comparative Neurology, 1997, 385, 245-264.	1.6	132
82	Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. Journal of Comparative Neurology, 1997, 385, 245-264.	1.6	7
83	The auditory nerve in congenitally deaf white cats: Correlations between anatomy and electrophysiology. Journal of the Acoustical Society of America, 1997, 101, 3191-3191.	1.1	0
84	Peripheral Course of Genioglossal Motor Axons Within the Hypoglossal Nerve of the Rat. Laryngoscope, 1996, 106, 1274-1279.	2.0	5
85	Immunocytochemical localization of glycine in a subset of cartwheel cells of the dorsal cochlear nucleus in rats. Hearing Research, 1996, 96, 157-166.	2.0	25
86	63: Ultrastructure Analysis of Primary Endings in Deaf White Cats: Morphologic Alterations in Endbulbs of Held. Otolaryngology - Head and Neck Surgery, 1996, 115, P98-P98.	1.9	0
87	Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Research, 1996, 706, 97-102.	2.2	113
88	Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Research, 1996, 736, 315-328.	2.2	85
89	Immunocytochemical localization of the mGluR1? metabotropic glutamate receptor in the dorsal cochlear nucleus. , 1996, 364, 729-745.		58
90	Activity-related features of synapse morphology: A study of endbulbs of Held. , 1996, 365, 141-158.		81

#	Article	IF	CITATIONS
91	Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat. Journal of Comparative Neurology, 1996, 365, 159-172.	1.6	176
92	Ultrastructural study of the granule cell domain of the cochlear nucleus in rats: Mossy fiber endings and their targets. , 1996, 369, 345-360.		84
93	Projections from auditory cortex to the cochlear nucleus in rats: Synapses on granule cell dendrites. , 1996, 371, 311-324.		127
94	Neuronal organization of the cochlear nuclei in alligator lizards: A light and electron microscopic investigation. Journal of Comparative Neurology, 1995, 357, 217-241.	1.6	15
95	Inositol 1,4,5-trisphosphate receptors: Immunocytochemical localization in the dorsal cochlear nucleus. Journal of Comparative Neurology, 1995, 358, 102-118.	1.6	42
96	Widespread expression of Huntington's disease gene (IT15) protein product. Neuron, 1995, 14, 1065-1074.	8.1	485
97	Ultrastructural Features of Endbulbs of Held in Deaf White Cats: Changes in Structure Related to Age of Deafness. Otolaryngology - Head and Neck Surgery, 1995, 113, P100-P100.	1.9	1
98	Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. Journal of Comparative Neurology, 1994, 348, 261-276.	1.6	113
99	Central trajectories of type II (thin) fibers of the auditory nerve in cats. Hearing Research, 1994, 79, 74-82.	2.0	20
100	The projections of intracellularly labeled auditory nerve fibers to the dorsal cochlear nucleus of cats. Journal of Comparative Neurology, 1993, 329, 20-35.	1.6	75
101	Frequency organization of the dorsal cochlear nucleus in cats. Journal of Comparative Neurology, 1993, 329, 36-52.	1.6	67
102	Neuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia. Neuroscience, 1993, 57, 339-352.	2.3	75
103	Ultrastructural Analysis of Synaptic Endings of Auditory Nerve Fibers in Cats: Correlations with Spontaneous Discharge Rate. , 1993, , 65-74.		7
104	The Auditory Nerve: Peripheral Innervation, Cell Body Morphology, and Central Projections. Springer Handbook of Auditory Research, 1992, , 23-65.	0.7	70
105	Synaptic connections of the auditory nerve in cats: Relationship between endbulbs of held and spherical bushy cells. Journal of Comparative Neurology, 1991, 305, 35-48.	1.6	156
106	Neurofilament antibodies and spiral ganglion neurons of the mammalian cochlea. Journal of Comparative Neurology, 1991, 306, 393-408.	1.6	91
107	Unmyelinated axons of the auditory nerve in cats. Journal of Comparative Neurology, 1991, 308, 209-223.	1.6	40
108	Central projections of cochlear nerve fibers in the alligator lizard. Journal of Comparative Neurology, 1990, 295, 530-547.	1.6	50

#	Article	IF	CITATIONS
109	Endbulbs of held and spherical bushy cells in cats: Morphological correlates with physiological properties. Journal of Comparative Neurology, 1989, 280, 553-562.	1.6	113
110	Central projections of intracellularly labeled auditory nerve fibers in cats: Morphometric correlations with physiological properties. Journal of Comparative Neurology, 1988, 271, 130-142.	1.6	79
111	Central trajectories of type II spiral ganglion neurons. Journal of Comparative Neurology, 1988, 278, 581-590.	1.6	150
112	Brainstem branches from olivocochlear axons in cats and rodents. Journal of Comparative Neurology, 1988, 278, 591-603.	1.6	167
113	Hair cell innervation by spiral ganglion neurons in the mouse. Journal of Comparative Neurology, 1987, 255, 560-570.	1.6	148
114	A monoclonal antibody labels type II neurons of the spiral ganglion. Brain Research, 1986, 383, 327-332.	2.2	53
115	The central prod ections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology. Journal of Comparative Neurology, 1986, 249, 261-278.	1.6	138
116	The dorsal cochlear nucleus of the mouse: A light microscopic analysis of neurons that project to the inferior colliculus. Journal of Comparative Neurology, 1985, 242, 381-396.	1.6	104
117	Progress in Low-LET Heavy Particle Therapy: Intracranial and Paracranial Tumors and Uveal Melanomas. Radiation Research, 1985, 104, S219.	1.5	47
118	Effects of sensory deprivation on the developing mouse olfactory system: a light and electron microscopic, morphometric analysis. Journal of Neuroscience, 1984, 4, 638-653.	3.6	153
119	Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. Journal of Comparative Neurology, 1984, 225, 167-186.	1.6	190
120	The central projections of intracellularly labeled auditory nerve fibers in cats. Journal of Comparative Neurology, 1984, 229, 432-450.	1.6	222
121	Hair-Cell Innervation by Spiral Ganglion Cells in Adult Cats. Science, 1982, 217, 175-177.	12.6	280
122	Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held. Journal of Comparative Neurology, 1982, 210, 239-257.	1.6	190
123	Differential afferent projections to the inferior colliculus from the cochlear nucleus in the albino mouse. Brain Research, 1981, 210, 342-349.	2.2	126
124	Differential plasticity of morphologically distinct neuron populations in the medial geniculate body of the cat during classical conditioning. Behavioral Biology, 1978, 22, 275-301.	2.2	146
125	Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse. Brain Research, 1976, 104, 309-315.	2.2	159
126	Corticofugal modulation of the medial geniculate body. Experimental Neurology, 1976, 51, 377-391.	4.1	99

#	Article	IF	CITATIONS
127	Changes in pyramidal cell density consequent to vibrissae removal in the newborn rat. Brain Research, 1975, 96, 82-87.	2.2	37
128	Differential effect of enucleation on two populations of layer V pyramidal cells. Brain Research, 1975, 88, 554-559.	2.2	54
129	Increased spine density in auditory cortex following visual or somatic deafferentation. Brain Research, 1975, 90, 143-146.	2.2	70
130	Differential telencephalic projections of the medial and ventral divisions of the medial geniculate body of the rat. Brain Research, 1974, 82, 173-177.	2.2	130