David K Ryugo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4909411/publications.pdf

Version: 2024-02-01

		34105	5	1608
130	8,642	52		86
papers	citations	h-index		g-index
132	132	132		3820
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Widespread expression of Huntington's disease gene (IT15) protein product. Neuron, 1995, 14, 1065-1074.	8.1	485
2	Hair-Cell Innervation by Spiral Ganglion Cells in Adult Cats. Science, 1982, 217, 175-177.	12.6	280
3	The central projections of intracellularly labeled auditory nerve fibers in cats. Journal of Comparative Neurology, 1984, 229, 432-450.	1.6	222
4	Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held. Journal of Comparative Neurology, 1982, 210, 239-257.	1.6	190
5	Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. Journal of Comparative Neurology, 1984, 225, 167-186.	1.6	190
6	Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat. Journal of Comparative Neurology, 1996, 365, 159-172.	1.6	176
7	Brainstem branches from olivocochlear axons in cats and rodents. Journal of Comparative Neurology, 1988, 278, 591-603.	1.6	167
8	The spiral ganglion: Connecting the peripheral and central auditory systems. Hearing Research, 2011, 278, 2-20.	2.0	167
9	Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse. Brain Research, 1976, 104, 309-315.	2.2	159
10	Synaptic connections of the auditory nerve in cats: Relationship between endbulbs of held and spherical bushy cells. Journal of Comparative Neurology, 1991, 305, 35-48.	1.6	156
11	Effects of sensory deprivation on the developing mouse olfactory system: a light and electron microscopic, morphometric analysis. Journal of Neuroscience, 1984, 4, 638-653.	3.6	153
12	Central trajectories of type II spiral ganglion neurons. Journal of Comparative Neurology, 1988, 278, 581-590.	1.6	150
13	Hair cell innervation by spiral ganglion neurons in the mouse. Journal of Comparative Neurology, 1987, 255, 560-570.	1.6	148
14	Differential plasticity of morphologically distinct neuron populations in the medial geniculate body of the cat during classical conditioning. Behavioral Biology, 1978, 22, 275-301.	2.2	146
15	The central prod ections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology. Journal of Comparative Neurology, 1986, 249, 261-278.	1.6	138
16	Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of held., 1997, 385, 230-244.		137
17	Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. Hearing Research, 2006, 221, 104-118.	2.0	136
18	Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry. Journal of Comparative Neurology, 2009, 514, 297-309.	1.6	136

#	Article	IF	Citations
19	Progressive Cerebellar, Auditory, and Esophageal Dysfunction Caused by Targeted Disruption of the <i>frizzled -</i> 4 Gene. Journal of Neuroscience, 2001, 21, 4761-4771.	3.6	135
20	Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. Journal of Comparative Neurology, 1997, 385, 245-264.	1.6	132
21	Differential telencephalic projections of the medial and ventral divisions of the medial geniculate body of the rat. Brain Research, 1974, 82, 173-177.	2.2	130
22	Restoration of Auditory Nerve Synapses in Cats by Cochlear Implants. Science, 2005, 310, 1490-1492.	12.6	129
23	Projections from auditory cortex to the cochlear nucleus in rats: Synapses on granule cell dendrites. , 1996, 371, 311-324.		127
24	Differential afferent projections to the inferior colliculus from the cochlear nucleus in the albino mouse. Brain Research, 1981, 210, 342-349.	2.2	126
25	Primary innervation of the avian and mammalian cochlear nucleus. Brain Research Bulletin, 2003, 60, 435-456.	3.0	121
26	Endbulbs of held and spherical bushy cells in cats: Morphological correlates with physiological properties. Journal of Comparative Neurology, 1989, 280, 553-562.	1.6	113
27	Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. Journal of Comparative Neurology, 1994, 348, 261-276.	1.6	113
28	Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Research, 1996, 706, 97-102.	2.2	113
29	The dorsal cochlear nucleus of the mouse: A light microscopic analysis of neurons that project to the inferior colliculus. Journal of Comparative Neurology, 1985, 242, 381-396.	1.6	104
30	Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus. Journal of Comparative Neurology, 1999, 408, 515-531.	1.6	100
31	Corticofugal modulation of the medial geniculate body. Experimental Neurology, 1976, 51, 377-391.	4.1	99
32	Single unit recordings in the auditory nerve of congenitally deaf white cats: Morphological correlates in the cochlea and cochlear nucleus. Journal of Comparative Neurology, 1998, 397, 532-548.	1.6	97
33	Neurofilament antibodies and spiral ganglion neurons of the mammalian cochlea. Journal of Comparative Neurology, 1991, 306, 393-408.	1.6	91
34	Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. Journal of Comparative Neurology, 2005, 484, 191-205.	1.6	86
35	Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the <i>Barhl1 </i> homeobox gene. Development (Cambridge), 2002, 129, 3523-3532.	2.5	86
36	Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Research, 1996, 736, 315-328.	2.2	85

3

#	Article	IF	Citations
37	Development of Primary Axosomatic Endings in the Anteroventral Cochlear Nucleus of Mice. JARO - Journal of the Association for Research in Otolaryngology, 2000, 1, 103-119.	1.8	85
38	Ultrastructural study of the granule cell domain of the cochlear nucleus in rats: Mossy fiber endings and their targets., 1996, 369, 345-360.		84
39	Activity-related features of synapse morphology: A study of endbulbs of Held. , 1996, 365, 141-158.		81
40	Central projections of intracellularly labeled auditory nerve fibers in cats: Morphometric correlations with physiological properties. Journal of Comparative Neurology, 1988, 271, 130-142.	1.6	79
41	Neural Coding of Interaural Time Differences with Bilateral Cochlear Implants: Effects of Congenital Deafness. Journal of Neuroscience, 2010, 30, 14068-14079.	3.6	79
42	Multimodal inputs to the granule cell domain of the cochlear nucleus. Experimental Brain Research, 2003, 153, 477-485.	1.5	77
43	The source of corticocollicular and corticobulbar projections in area Te1 of the rat. Experimental Brain Research, 2003, 153, 461-466.	1.5	76
44	The projections of intracellularly labeled auditory nerve fibers to the dorsal cochlear nucleus of cats. Journal of Comparative Neurology, 1993, 329, 20-35.	1.6	75
45	Neuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia. Neuroscience, 1993, 57, 339-352.	2.3	75
46	Four Independent Mutations in the Feline Fibroblast Growth Factor 5 Gene Determine the Long-Haired Phenotype in Domestic Cats. Journal of Heredity, 2007, 98, 555-566.	2.4	71
47	Increased spine density in auditory cortex following visual or somatic deafferentation. Brain Research, 1975, 90, 143-146.	2.2	70
48	The Auditory Nerve: Peripheral Innervation, Cell Body Morphology, and Central Projections. Springer Handbook of Auditory Research, 1992, , 23-65.	0.7	70
49	Projections of the second cervical dorsal root ganglion to the cochlear nucleus in rats. Journal of Comparative Neurology, 2006, 496, 335-348.	1.6	68
50	Frequency organization of the dorsal cochlear nucleus in cats. Journal of Comparative Neurology, 1993, 329, 36-52.	1.6	67
51	The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hearing Research, 2000, 147, 160-174.	2.0	66
52	Endogenous Retrovirus Insertion in the <i>KIT </i> Oncogene Determines <i>White </i> and <i>White spotting </i> in Domestic Cats. G3: Genes, Genomes, Genetics, 2014, 4, 1881-1891.	1.8	66
53	Efferent synapses return to inner hair cells in the aging cochlea. Neurobiology of Aging, 2012, 33, 2892-2902.	3.1	62
54	Immunocytochemical localization of the mGluR1? metabotropic glutamate receptor in the dorsal cochlear nucleus., 1996, 364, 729-745.		58

#	Article	IF	CITATIONS
55	The cellular origin of corticofugal projections to the superior olivary complex in the rat. Brain Research, 2002, 925, 28-41.	2.2	56
56	3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. Journal of Comparative Neurology, 2013, 521, 1510-1532.	1.6	56
57	Axonal pathways to the lateral superior olive labeled with biotinylated dextran amine injections in the dorsal cochlear nucleus of rats. Journal of Comparative Neurology, 2003, 461, 452-465.	1.6	55
58	Descending Connections of Auditory Cortex to the Midbrain and Brain Stem., 2011,, 189-208.		55
59	Differential effect of enucleation on two populations of layer V pyramidal cells. Brain Research, 1975, 88, 554-559.	2.2	54
60	Projections of the pontine nuclei to the cochlear nucleus in rats. Journal of Comparative Neurology, 2001, 436, 290-303.	1.6	54
61	A monoclonal antibody labels type II neurons of the spiral ganglion. Brain Research, 1986, 383, 327-332.	2.2	53
62	Effects of congenital deafness in the cochlear nuclei of Shaker-2 mice: An ultrastructural analysis of synapse morphology in the endbulbs of Held. Journal of Neurocytology, 2003, 32, 229-243.	1.5	53
63	Long-Term, Stable Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors Grafted into the Adult Mammalian Neostriatum. Stem Cells, 2009, 27, 2414-2426.	3.2	52
64	Central projections of cochlear nerve fibers in the alligator lizard. Journal of Comparative Neurology, 1990, 295, 530-547.	1.6	50
65	Progress in Low-LET Heavy Particle Therapy: Intracranial and Paracranial Tumors and Uveal Melanomas. Radiation Research, 1985, 104, S219.	1.5	47
66	Structural and functional classes of multipolar cells in the ventral cochlear nucleus. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 331-344.	2.0	46
67	Diabetes mellitus and hearing loss: A review. Ageing Research Reviews, 2021, 71, 101423.	10.9	46
68	Morphological Characterization of Bushy Cells and Their Inputs in the Laboratory Mouse (Mus) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 222
69	Revealing the molecular layer of the primate dorsal cochlear nucleus. Neuroscience, 2008, 154, 99-113.	2.3	45
70	Inositol 1,4,5-trisphosphate receptors: Immunocytochemical localization in the dorsal cochlear nucleus. Journal of Comparative Neurology, 1995, 358, 102-118.	1.6	42
71	Synaptic morphology and the influence of auditory experience. Hearing Research, 2011, 279, 118-130.	2.0	42
72	Bilateral effects of unilateral cochlear implantation in congenitally deaf cats. Journal of Comparative Neurology, 2010, 518, 2382-2404.	1.6	41

#	Article	IF	CITATIONS
73	Unmyelinated axons of the auditory nerve in cats. Journal of Comparative Neurology, 1991, 308, 209-223.	1.6	40
74	Projections from auditory cortex to cochlear nucleus: A comparative analysis of rat and mouse. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 397-408.	2.0	40
75	A modified Golgi staining protocol for use in the human brain stem and cerebellum. Journal of Neuroscience Methods, 2006, 150, 90-95.	2.5	39
76	Projections of low spontaneous rate, high threshold auditory nerve fibers to the small cell cap of the cochlear nucleus in cats. Neuroscience, 2008, 154, 114-126.	2.3	39
77	Postnatal development of a large auditory nerve terminal: The endbulb of Held in cats. Hearing Research, 2006, 216-217, 100-115.	2.0	38
78	Synaptic plasticity after chemical deafening and electrical stimulation of the auditory nerve in cats. Journal of Comparative Neurology, 2010, 518, 1046-1063.	1.6	38
79	Changes in pyramidal cell density consequent to vibrissae removal in the newborn rat. Brain Research, 1975, 96, 82-87.	2.2	37
80	Two types of afferent terminals innervate cochlear inner hair cells in C57BL/6J mice. Brain Research, 2004, 1016, 182-194.	2.2	37
81	Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlearâ€implanted cats. Journal of Comparative Neurology, 2012, 520, 2202-2217.	1.6	37
82	Commissural glycinergic inhibition of bushy and stellate cells in the anteroventral cochlear nucleus. NeuroReport, 2002, 13, 555-558.	1.2	35
83	Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve. Experimental Brain Research, 2003, 153, 452-460.	1.5	33
84	Separate forms of pathology in the cochlea of congenitally deaf white cats. Hearing Research, 2003, 181, 73-84.	2.0	30
85	Postnatal development of the endbulb of Held in congenitally deaf cats. Frontiers in Neuroanatomy, 2010, 4, 19.	1.7	30
86	Descending projections from the inferior colliculus to medial olivocochlear efferents: Mice with normal hearing, early onset hearing loss, and congenital deafness. Hearing Research, 2017, 343, 34-49.	2.0	30
87	The functional age of hearing loss in a mouse model of presbycusis. II. Neuroanatomical correlates. Hearing Research, 2003, 183, 29-36.	2.0	28
88	Hearing molecules: contributions from genetic deafness. Cellular and Molecular Life Sciences, 2007, 64, 566-580.	5.4	28
89	Feline Deafness. Veterinary Clinics of North America - Small Animal Practice, 2012, 42, 1179-1207.	1.5	28
90	The Effect of Cochlear-Implant-Mediated Electrical Stimulation on Spiral Ganglion Cells in Congenitally Deaf White Cats. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 587-603.	1.8	27

#	Article	IF	Citations
91	Regulation of auditory plasticity during critical periods and following hearing loss. Hearing Research, 2020, 397, 107976.	2.0	27
92	An Animal Model for Cochlear Implants. JAMA Otolaryngology, 2004, 130, 499.	1.2	26
93	Hidden hearing loss and endbulbs of Held: Evidence for central pathology before detection of ABR threshold increases. Hearing Research, 2018, 364, 104-117.	2.0	26
94	Immunocytochemical localization of glycine in a subset of cartwheel cells of the dorsal cochlear nucleus in rats. Hearing Research, 1996, 96, 157-166.	2.0	25
95	The Effects of Congenital Deafness on Auditory Nerve Synapses: Type I and Type II Multipolar Cells in the Anteroventral Cochlear Nucleus of Cats. JARO - Journal of the Association for Research in Otolaryngology, 2002, 3, 403-417.	1.8	25
96	Projections of the lateral reticular nucleus to the cochlear nucleus in rats. Journal of Comparative Neurology, 2007, 504, 583-598.	1.6	25
97	Auditory and Vestibular Efferents. Springer Handbook of Auditory Research, 2011, , .	0.7	25
98	Cytosolic Recognition of RNA Drives the Immune Response to Heterologous Erythrocytes. Cell Reports, 2017, 21, 1624-1638.	6.4	25
99	Inhibitory synaptic interactions between cochlear nuclei. NeuroReport, 1999, 10, 1913-1917.	1.2	24
100	Tonotopic organization of vertical cells in the dorsal cochlear nucleus of the CBA/J mouse. Journal of Comparative Neurology, 2014, 522, 937-949.	1.6	22
101	Central trajectories of type II (thin) fibers of the auditory nerve in cats. Hearing Research, 1994, 79, 74-82.	2.0	20
102	Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss. Brain Research, 2015, 1605, 22-30.	2.2	20
103	Auditory neuroplasticity, hearing loss and cochlear implants. Cell and Tissue Research, 2015, 361, 251-269.	2.9	19
104	Preparation of an Awake Mouse for Recording Neural Responses and Injecting Tracers. Journal of Visualized Experiments, 2012 , , .	0.3	18
105	PHR1, a PH Domain-Containing Protein Expressed in Primary Sensory Neurons. Molecular and Cellular Biology, 2004, 24, 9137-9151.	2.3	16
106	Age-related neuronal loss in the cochlea is not delayed by synaptic modulation. Neurobiology of Aging, 2011, 32, 2321.e13-2321.e23.	3.1	16
107	Neuronal organization of the cochlear nuclei in alligator lizards: A light and electron microscopic investigation. Journal of Comparative Neurology, 1995, 357, 217-241.	1.6	15
108	The effect of progressive hearing loss on the morphology of endbulbs of Held and bushy cells. Hearing Research, 2017, 343, 14-33.	2.0	15

#	Article	IF	CITATIONS
109	Auditory System. , 2012, , 607-645.		14
110	Efficient quantification of afferent cochlear ultrastructure using design-based stereology. Journal of Neuroscience Methods, 2006, 150, 150-158.	2.5	12
111	Descending projections from the inferior colliculus to the dorsal cochlear nucleus are excitatory. Journal of Comparative Neurology, 2017, 525, 773-793.	1.6	12
112	Central Projections of Spiral Ganglion Neurons. Springer Handbook of Auditory Research, 2016, , 157-190.	0.7	9
113	Idiopathic sudden sensorineural hearing loss: A critique on corticosteroid therapy. Hearing Research, 2022, 422, 108565.	2.0	8
114	Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. Journal of Comparative Neurology, 1997, 385, 245-264.	1.6	7
115	Ultrastructural Analysis of Synaptic Endings of Auditory Nerve Fibers in Cats: Correlations with Spontaneous Discharge Rate., 1993,, 65-74.		7
116	Ultrastructural examination of the somatic innervation of ventrotubercular cells in the rat. Journal of Comparative Neurology, 2003, 459, 77-89.	1.6	6
117	Expression and Localization of Kv1.1 and Kv3.1b Potassium Channels in the Cochlear Nucleus and Inferior Colliculus after Long-Term Auditory Deafferentation. Brain Sciences, 2020, 10, 35.	2.3	6
118	Peripheral Course of Genioglossal Motor Axons Within the Hypoglossal Nerve of the Rat. Laryngoscope, 1996, 106, 1274-1279.	2.0	5
119	Ultrastructural changes in primary endings of deaf white catsâ⁻†, â⁻tâ⁻†, â⁻Second Place—Resident Basic Sciend Award 1996. Otolaryngology - Head and Neck Surgery, 1997, 116, 286-293.	ce 1.9	5
120	Immunocytochemical Localization of Olfactory-signaling Molecules in Human and Rat Spermatozoa. Journal of Histochemistry and Cytochemistry, 2020, 68, 491-513.	2.5	5
121	Projections from the ventral nucleus of the lateral lemniscus to the cochlea in the mouse. Journal of Comparative Neurology, 2021, 529, 2995-3012.	1.6	5
122	Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus. Journal of Comparative Neurology, 1999, 408, 515-531.	1.6	4
123	Introduction to Efferent Systems. Springer Handbook of Auditory Research, 2011, , 1-15.	0.7	4
124	Synaptic Organization and Plasticity in the Auditory System of the Deaf White Cat. Springer Handbook of Auditory Research, 2013, , 83-128.	0.7	2
125	Ultrastructural Features of Endbulbs of Held in Deaf White Cats: Changes in Structure Related to Age of Deafness. Otolaryngology - Head and Neck Surgery, 1995, 113, P100-P100.	1.9	1
126	63: Ultrastructure Analysis of Primary Endings in Deaf White Cats: Morphologic Alterations in Endbulbs of Held. Otolaryngology - Head and Neck Surgery, 1996, 115, P98-P98.	1.9	0

#	ARTICLE	IF	CITATIONS
127	Cochlear Implantation, Synaptic Plasticity and Auditory Function. , 2012, , .		0
128	Giant Synaptic Terminals: Endbulbs and Calyces of the Auditory System \hat{a}^{-} , , 2017, , .		0
129	From Degenerative Debris to Neuronal Tracing: An Anterograde View of Auditory Circuits. Springer Handbook of Auditory Research, 2014, , 513-531.	0.7	0
130	The auditory nerve in congenitally deaf white cats: Correlations between anatomy and electrophysiology. Journal of the Acoustical Society of America, 1997, 101, 3191-3191.	1.1	0