Linzhou Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4907911/publications.pdf

Version: 2024-02-01

136950 4,588 53 32 h-index citations papers

g-index 55 55 55 5699 docs citations times ranked citing authors all docs

175258

52

#	Article	IF	CITATIONS
1	Ultrathin Ironâ€Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Advanced Materials, 2017, 29, 1606793.	21.0	1,144
2	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	13.7	464
3	Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catalysis, 2019, 2, 688-695.	34.4	423
4	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 13565-13572.	13.8	205
5	Sulfurâ€Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angewandte Chemie - International Edition, 2020, 59, 14664-14670.	13.8	178
6	Defectâ€Induced Pt–Co–Se Coordinated Sites with Highly Asymmetrical Electronic Distribution for Boosting Oxygenâ€Involving Electrocatalysis. Advanced Materials, 2019, 31, e1805581.	21.0	168
7	Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Research, 2018, 11, 3509-3518.	10.4	167
8	Understanding the Activity of Coâ€N _{4â^³<i>x</i>} C _{<i>x</i>} in Atomic Metal Catalysts for Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 6122-6127.	13.8	156
9	Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis. Journal of the American Chemical Society, 2022, 144, 2171-2178.	13.7	140
10	Plasmaâ€Triggered Synergy of Exfoliation, Phase Transformation, and Surface Engineering in Cobalt Diselenide for Enhanced Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 16421-16425.	13.8	120
11	Sulfurâ€Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angewandte Chemie, 2020, 132, 14772-14778.	2.0	89
12	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 9404-9408.	13.8	87
13	Gradientâ€Concentration Design of Stable Core–Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis. Advanced Materials, 2020, 32, e2003493.	21.0	79
14	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 13699-13706.	2.0	64
15	Structural Buffer Engineering on Metal Oxide for Longâ€Term Stable Seawater Splitting. Advanced Functional Materials, 2022, 32, .	14.9	64
16	Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13, 3327-3345.	5.6	60
17	Structure design of a hyperbranched polyamine adsorbent for CO ₂ adsorption. Green Chemistry, 2016, 18, 5859-5869.	9.0	54
18	Fine-Tuning the Coordinatively Unsaturated Metal Sites of Metal–Organic Frameworks by Plasma Engraving for Enhanced Electrocatalytic Activity. ACS Applied Materials & Engraphy; Interfaces, 2019, 11, 44300-44307.	8.0	53

#	Article	IF	CITATIONS
19	Defective Carbons Derived from Macadamia Nut Shell Biomass for Efficient Oxygen Reduction and Supercapacitors. ChemElectroChem, 2018, 5, 1874-1879.	3.4	47
20	Understanding the Activity of Coâ€N _{4â^'<i>x</i>} C _{<i>x</i>} in Atomic Metal Catalysts for Oxygen Reduction Catalysis. Angewandte Chemie, 2020, 132, 6178-6183.	2.0	47
21	Atomic Cobalt on Defective Bimodal Mesoporous Carbon toward Efficient Oxygen Reduction for Zinc–Air Batteries. Small Methods, 2019, 3, 1800450.	8.6	45
22	Preparation and characterization of amine-functionalized sugarcane bagasse for CO2 capture. Journal of Environmental Management, 2016, 168, 142-148.	7.8	44
23	Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
24	Porous Structure Engineering of Iridium Oxide Nanoclusters on Atomic Scale for Efficient pHâ€Universal Overall Water Splitting. Small, 2021, 17, e2100121.	10.0	40
25	Preparation of a solid amine adsorbent based on polypropylene fiber and its performance for CO ₂ capture. Journal of Materials Research, 2013, 28, 2881-2889.	2.6	39
26	Preparation and Properties of A Hyperbranch-Structured Polyamine adsorbent for Carbon Dioxide Capture. Scientific Reports, 2017, 7, 3913.	3.3	39
27	Grafting Cobalt Diselenide on Defective Graphene for Enhanced Oxygen Evolution Reaction. IScience, 2018, 7, 145-153.	4.1	39
28	Defective Fe Metal–Organic Frameworks Enhance Metabolic Profiling for Highâ€Accuracy Diagnosis of Human Cancers. Advanced Materials, 2022, 34, e2201422.	21.0	39
29	The oxidation of viscose fiber optimized by response surface methodology and its further amination with PEI for CO2 adsorption. Cellulose, 2016, 23, 2539-2548.	4.9	36
30	Silanol-rich platelet silica modified with branched amine for efficient CO2 capture. Chemical Engineering Science, 2018, 181, 315-325.	3.8	35
31	Cobalt Electrochemical Recovery from Lithium Cobalt Oxides in Deep Eutectic Choline Chloride+Urea Solvents. ChemSusChem, 2021, 14, 2972-2983.	6.8	33
32	Beyond Platinum: Defects Abundant CoP ₃ /Ni ₂ P Heterostructure for Hydrogen Evolution Electrocatalysis. Small Science, 2021, 1, 2000027.	9.9	32
33	Plasma‶riggered Synergy of Exfoliation, Phase Transformation, and Surface Engineering in Cobalt Diselenide for Enhanced Water Oxidation. Angewandte Chemie, 2018, 130, 16659-16663.	2.0	31
34	Efficient water oxidation with amorphous transition metal boride catalysts synthesized by chemical reduction of metal nitrate salts at room temperature. RSC Advances, 2017, 7, 32923-32930.	3.6	27
35	Microcrystalline cellulose-derived porous carbons with defective sites for electrochemical applications. Journal of Materials Chemistry A, 2019, 7, 22579-22587.	10.3	25
36	Multiple Vacancies on (111) Facets of Singleâ€Crystal NiFe ₂ O ₄ Spinel Boost Electrocatalytic Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2020, 15, 3995-3999.	3.3	23

#	Article	IF	Citations
37	Multiscale Engineering of Nonprecious Metal Electrocatalyst for Realizing Ultrastable Seawater Splitting in Weakly Alkaline Solution. Advanced Science, 2022, 9, .	11.2	23
38	In-situ preparation of porous carbon-supported molybdenum dioxide and its performance in the oxidative desulfurization of thiophene. Journal of Materials Science, 2014, 49, 5606-5616.	3.7	22
39	Preparation of a sulfonated activated carbon fiber catalyst with \hat{I}^3 -irradiation-induced grafting method. Journal of Materials Research, 2012, 27, 3083-3089.	2.6	20
40	One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Chemical Research in Chinese Universities, 2020, 36, 479-487.	2.6	20
41	Strontium-doped lanthanum iron nickelate oxide as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 553, 813-819.	9.4	18
42	Rapid synthesis of tunable-structured short-pore SBA-15 and its application on CO2 capture. Journal of Porous Materials, 2016, 23, 529-537.	2.6	15
43	Phase and morphology engineering of porous cobalt–copper sulfide as a bifunctional oxygen electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 18329-18337.	10.3	14
44	Recent Advances on Hydrogen Evolution and Oxygen Evolution Catalysts for Direct Seawater Splitting. Coatings, 2022, 12, 659.	2.6	14
45	Solid Amine Adsorbent Prepared by Molecular Imprinting and Its Carbon Dioxide Adsorption Properties. Chemistry - an Asian Journal, 2016, 11, 3055-3061.	3.3	12
46	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 9504-9508.	2.0	10
47	Synthesis of nitrogen-rich hollow microspheres for CO2 adsorption. Journal of Materials Science, 2019, 54, 3805-3816.	3.7	8
48	Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light. Frontiers of Chemical Science and Engineering, 2021, 15, 892-901.	4.4	8
49	Establishment of a novel surface-imprinting system for melamine recognition and mechanism of template–matrix interactions. Journal of Materials Science, 2014, 49, 2853-2863.	3.7	7
50	Controlled Synthesis and Aminating of Poly(melamine)-Paraformaldehyde Mesoporous Resin for CO2 Adsorption. Energy & Controlled Synthesis and Aminating of Poly(melamine)-Paraformaldehyde Mesoporous Resin for CO2 Adsorption.	5.1	7
51	Mechanochemically Synthesised Flexible Electrodes based on Bimetallic Metalâ€organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	2.0	7
52	Preparation of a surface molecularly imprinted fiber for bisphenol a recognition. Journal of Polymer Research, 2014, 21, 1.	2.4	5
53	Innenrýcktitelbild: Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction (Angew. Chem. 28/2019). Angewandte Chemie, 2019, 131, 9749-9749.	2.0	0