
## Xusheng Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4906637/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fabricating advanced asymmetric supercapacitors by flame growing carbon nanofibers on surface engineered stainless steel electrode and modulating the redox active electrolyte. Surface and Coatings Technology, 2022, 431, 128032. | 4.8  | 2         |
| 2  | Ultrafast flame coating of carbon and chemical vapor deposition of graphene on NiTi alloy to enhance its corrosion resistance. Diamond and Related Materials, 2022, 128, 109231.                                                    | 3.9  | 10        |
| 3  | Glass fibres coated with flame synthesised carbon nanotubes to enhance interface properties.<br>Composites Communications, 2021, 24, 100623.                                                                                        | 6.3  | 10        |
| 4  | Facile flame deposit of CNFs/Fe2O3 coating on 304 stainless steel mesh and their high capacitive performance. Electrochimica Acta, 2020, 335, 135527.                                                                               | 5.2  | 14        |
| 5  | Electrodeposited Polyaniline Nanofibers and MoO3 Nanobelts for High-Performance Asymmetric Supercapacitor with Redox Active Electrolyte. Polymers, 2020, 12, 2303.                                                                  | 4.5  | 17        |
| 6  | Flame synthesis of carbon nanotubes on glass fibre fabrics and their enhancement in electrical and<br>thermal properties of glass fibre/epoxy composites. Composites Part B: Engineering, 2020, 198, 108249.                        | 12.0 | 22        |
| 7  | Facile flame deposition of carbon coating onto Ni foam and the study of the derived carbon foam with high capacitive performance. Surface and Coatings Technology, 2020, 401, 126246.                                               | 4.8  | 10        |
| 8  | Highly Sensitive Flexible Poly(dimethylsiloxane) Composite Sensors Based on Flame-Synthesized<br>Carbon Foam Made of Vertical Carbon Nanosheet Arrays. ACS Sustainable Chemistry and Engineering,<br>2020, 8, 14091-14100.          | 6.7  | 5         |
| 9  | Carbon nano bowl array derived from a corncob sponge/carbon nanotubes/polymer composite and its electrochemical properties. Composites Science and Technology, 2019, 183, 107792.                                                   | 7.8  | 8         |
| 10 | Graphene/Carbon Paper Combined with Redox Active Electrolyte for Supercapacitors with High<br>Performance. Polymers, 2019, 11, 1355.                                                                                                | 4.5  | 7         |
| 11 | Redox-Active Gel Electrolyte Combined with Branched Polyaniline Nanofibers Doped with Ferrous<br>Ions for Ultra-High-Performance Flexible Supercapacitors. Polymers, 2019, 11, 1357.                                                | 4.5  | 22        |
| 12 | Hybrid three-dimensional graphene fillers and graphite platelets to improve the thermal conductivity and wear performance of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2019, 123, 270-277.            | 7.6  | 25        |
| 13 | Numerical Simulation of Failure of Composite Coatings due to Thermal and Hygroscopic Stresses.<br>Coatings, 2019, 9, 243.                                                                                                           | 2.6  | 16        |
| 14 | Facile flame catalytic growth of carbon nanomaterials on the surface of carbon nanotubes. Applied Surface Science, 2019, 465, 23-30.                                                                                                | 6.1  | 14        |
| 15 | Improving the delamination resistance of carbon fiber/epoxy composites by brushing and abrading of the woven fabrics. Construction and Building Materials, 2018, 158, 257-263.                                                      | 7.2  | 24        |
| 16 | Facile fabrication of large 3D graphene filler modified epoxy composites with improved thermal conduction and tribological performance. Carbon, 2018, 139, 1168-1177.                                                               | 10.3 | 71        |
| 17 | An Analytical Model of Interlaminar Fracture of Polymer Composite Reinforced by Carbon Fibres<br>Grafted with Carbon Nanotubes. Polymers, 2018, 10, 683.                                                                            | 4.5  | 9         |
| 18 | Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves. Composites Science and Technology, 2017, 140, 46-53.                                                        | 7.8  | 112       |

XUSHENG DU

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Composites Science and Technology, 2017, 140, 123-133.        | 7.8  | 130       |
| 20 | The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive<br>Patterns. Materials, 2017, 10, 1004.                                                          | 2.9  | 32        |
| 21 | Improving the electrical conductivity and interface properties of carbon fiber/epoxy composites by low temperature flame growth of carbon nanotubes. RSC Advances, 2016, 6, 48896-48904.       | 3.6  | 37        |
| 22 | In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates. Carbon, 2016, 110, 69-78.   | 10.3 | 78        |
| 23 | Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame. ACS Nano, 2016,<br>10, 453-462.                                                                              | 14.6 | 119       |
| 24 | Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field. Composites Science and Technology, 2015, 114, 126-135.   | 7.8  | 108       |
| 25 | Enhancement of the catalytic performance of a CNT supported Pt nanorod cluster catalyst by controlling their microstructure. RSC Advances, 2015, 5, 80176-80183.                               | 3.6  | 3         |
| 26 | 3D network graphene interlayer for excellent interlaminar toughness and strength in fiber reinforced composites. Carbon, 2015, 95, 978-986.                                                    | 10.3 | 76        |
| 27 | Flame synthesis of carbon nanotubes onto carbon fiber woven fabric and improvement of<br>interlaminar toughness of composite laminates. Composites Science and Technology, 2014, 101, 159-166. | 7.8  | 51        |
| 28 | Facile chemical synthesis of nitrogen-doped graphene sheets and their electrochemical capacitance.<br>Journal of Power Sources, 2013, 241, 460-466.                                            | 7.8  | 67        |
| 29 | Improved Tensile Strength and Ferroelectric Phase Content of Selfâ€Assembled Polyvinylidene Fluoride<br>Fiber Yarns. Macromolecular Materials and Engineering, 2012, 297, 209-213.             | 3.6  | 39        |
| 30 | On the flame synthesis of carbon nanotubes grafted onto carbon fibers and the bonding force between them. Carbon, 2012, 50, 2347-2350.                                                         | 10.3 | 67        |
| 31 | Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance. Nanoscale Research Letters, 2012, 7, 111.       | 5.7  | 23        |
| 32 | Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study. Nanoscale Research Letters, 2012, 7, 165.              | 5.7  | 26        |
| 33 | Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support.<br>Nanoscale Research Letters, 2011, 6, 364.                                                  | 5.7  | 35        |
| 34 | Fire response of polyamide 6 with layered and fibrillar nanofillers. Polymer Degradation and Stability, 2010, 95, 845-851.                                                                     | 5.8  | 24        |
| 35 | Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers. Composites<br>Science and Technology, 2010, 70, 1401-1409.                                                  | 7.8  | 115       |
| 36 | Electrodeposited PEDOT films on ITO with a flower-like hierarchical structure. Synthetic Metals, 2010, 160, 1636-1641.                                                                         | 3.9  | 45        |

XUSHENG DU

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Engineering of Nanotips in ZnO Submicrorods and Patterned Arrays. Crystal Growth and Design, 2009,<br>9, 797-802.                                                          | 3.0 | 16        |
| 38 | New Method To Prepare Graphite Nanocomposites. Chemistry of Materials, 2008, 20, 2066-2068.                                                                                | 6.7 | 125       |
| 39 | Studies of interactions among cobalt(III) polypyridyl complexes, 6-mercaptopurine and DNA.<br>Bioelectrochemistry, 2007, 70, 446-451.                                      | 4.6 | 24        |
| 40 | Facile synthesis of exfoliated polyaniline/vermiculite nanocomposites. Materials Letters, 2006, 60, 1847-1850.                                                             | 2.6 | 39        |
| 41 | Synthesis of poly(arylene disulfide)–vermiculite nanocomposites viain situ ring-opening polymerization of macrocyclic oligomers. Polymer International, 2004, 53, 789-793. | 3.1 | 16        |