
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4906422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360, 739-742.	12.6	957
2	Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infectious Diseases, The, 2002, 2, 73-85.	9.1	672
3	Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology (United Kingdom), 1997, 143, 405-416.	1.8	565
4	Prevalence of Molecular Mechanisms of Resistance to Azole Antifungal Agents in Candida albicans Strains Displaying High-Level Fluconazole Resistance Isolated from Human Immunodeficiency Virus-Infected Patients. Antimicrobial Agents and Chemotherapy, 2001, 45, 2676-2684.	3.2	435
5	Amino Acid Substitutions in the Cytochrome P-450 Lanosterol 14α-Demethylase (CYP51A1) from Azole-Resistant <i>Candida albicans</i> Clinical Isolates Contribute to Resistance to Azole Antifungal Agents. Antimicrobial Agents and Chemotherapy, 1998, 42, 241-253.	3.2	432
6	Mechanisms of Antifungal Drug Resistance. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019752.	6.2	419
7	TAC1 , Transcriptional Activator of CDR Genes, Is a New Transcription Factor Involved in the Regulation of Candida albicans ABC Transporters CDR1 and CDR2. Eukaryotic Cell, 2004, 3, 1639-1652.	3.4	377
8	A Mutation in Tac1p, a Transcription Factor Regulating CDR1 and CDR2, Is Coupled With Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans. Genetics, 2006, 172, 2139-2156.	2.9	341
9	Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Molecular Microbiology, 2003, 48, 959-976.	2.5	340
10	Candida albicans Mutations in the Ergosterol Biosynthetic Pathway and Resistance to Several Antifungal Agents. Antimicrobial Agents and Chemotherapy, 2003, 47, 2404-2412.	3.2	337
11	Emerging Threats in Antifungal-Resistant Fungal Pathogens. Frontiers in Medicine, 2016, 3, 11.	2.6	322
12	The ATP Binding Cassette Transporter Gene <i>CgCDR1</i> from <i>Candida glabrata</i> Is Involved in the Resistance of Clinical Isolates to Azole Antifungal Agents. Antimicrobial Agents and Chemotherapy, 1999, 43, 2753-2765.	3.2	313
13	A Human-Curated Annotation of the Candida albicans Genome. PLoS Genetics, 2005, 1, e1.	3.5	293
14	Genotypic Evolution of Azole Resistance Mechanisms in Sequential <i>Candida albicans</i> Isolates. Eukaryotic Cell, 2007, 6, 1889-1904.	3.4	268
15	Gain of Function Mutations in CgPDR1 of Candida glabrata Not Only Mediate Antifungal Resistance but Also Enhance Virulence. PLoS Pathogens, 2009, 5, e1000268.	4.7	248
16	Multiplicity of genes encoding secreted aspartic proteinases inCandidaspecies. Molecular Microbiology, 1994, 13, 357-368.	2.5	241
17	Role of ATP-Binding-Cassette Transporter Genes in High-Frequency Acquisition of Resistance to Azole Antifungals in Candida glabrata. Antimicrobial Agents and Chemotherapy, 2001, 45, 1174-1183.	3.2	240
18	Candida albicans Hyphal Formation and the Expression of the Efg1-Regulated Proteinases Sap4 to Sap6 Are Required for the Invasion of Parenchymal Organs, Infection and Immunity, 2002, 70, 3689-3700	2.2	235

#	Article	IF	CITATIONS
19	Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Research, 2009, 9, 1029-1050.	2.3	234
20	Potent Synergism of the Combination of Fluconazole and Cyclosporine in <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2000, 44, 2373-2381.	3.2	227
21	Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nature Communications, 2016, 7, 11128.	12.8	227
22	CRZ1, a target of the calcineurin pathway inCandida albicans. Molecular Microbiology, 2006, 59, 1429-1451.	2.5	224
23	Distinct Patterns of Gene Expression Associated with Development of Fluconazole Resistance in Serial <i>Candida albicans</i> Isolates from Human Immunodeficiency Virus-Infected Patients with Oropharyngeal Candidiasis. Antimicrobial Agents and Chemotherapy, 1998, 42, 2932-2937.	3.2	211
24	Identification and Expression of Multidrug Transporters Responsible for Fluconazole Resistance in <i>Candida dubliniensis</i> . Antimicrobial Agents and Chemotherapy, 1998, 42, 1819-1830.	3.2	194
25	A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology (United Kingdom), 2000, 146, 2743-2754.	1.8	193
26	Evolution of Drug Resistance in Experimental Populations of Candida albicans. Journal of Bacteriology, 2000, 182, 1515-1522.	2.2	191
27	Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Molecular Microbiology, 2000, 35, 386-396.	2.5	178
28	Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genetics and Biology, 2002, 36, 199-206.	2.1	174
29	The expression of the secreted aspartyl proteinases Sap4 to Sap6 fromCandida albicansin murine macrophages. Molecular Microbiology, 1998, 28, 543-554.	2.5	172
30	A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Molecular Microbiology, 2002, 43, 1197-1214.	2.5	168
31	Evidence that Members of the Secretory Aspartyl Proteinase Gene Family, in Particular <i>SAP2,</i> Are Virulence Factors for <i>Candida</i> Vaginitis. Journal of Infectious Diseases, 1999, 179, 201-208.	4.0	164
32	Resistance of human fungal pathogens to antifungal drugs. Current Opinion in Microbiology, 2002, 5, 379-385.	5.1	162
33	Comparison of Gene Expression Profiles of Candida albicans Azole-Resistant Clinical Isolates and Laboratory Strains Exposed to Drugs Inducing Multidrug Transporters. Antimicrobial Agents and Chemotherapy, 2004, 48, 3064-3079.	3.2	160
34	Genetic Separation of FK506 Susceptibility and Drug Transport in the Yeast Pdr5 ATP-binding Cassette Multidrug Resistance Transporter. Molecular Biology of the Cell, 1998, 9, 523-543.	2.1	146
35	Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candidaalbicans strains. Journal of Antimicrobial Chemotherapy, 1999, 44, 27-31.	3.0	140
36	Loss of Mitochondrial Functions Associated with Azole Resistance in Candida glabrata Results in Enhanced Virulence in Mice. Antimicrobial Agents and Chemotherapy, 2011, 55, 1852-1860.	3.2	135

#	Article	IF	CITATIONS
37	Interaction of Cytochrome P450 3A Inhibitors with P-Glycoprotein. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 323-332.	2.5	134
38	Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Molecular Microbiology, 2002, 36, 618-629.	2.5	131
39	Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene, CnAFR1, involved in the resistance to fluconazole. Molecular Microbiology, 2003, 47, 357-371.	2.5	131
40	Differential regulation of SAP8 and SAPS, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology (United Kingdom), 1998, 144, 2731-2737.	1.8	129
41	Experimental Induction of Fluconazole Resistance in Candida tropicalis ATCC 750. Antimicrobial Agents and Chemotherapy, 2000, 44, 1578-1584.	3.2	128
42	MALDIâ€TOF MSâ€based drug susceptibility testing of pathogens: The example of <i>Candida albicans</i> and fluconazole. Proteomics, 2009, 9, 4627-4631.	2.2	128
43	The ATPâ€binding cassette transporter–encoding gene <i>CgSNQ2</i> is contributing to the <i>CgPDR1</i> â€dependent azole resistance of <i>Candida glabrata</i> . Molecular Microbiology, 2008, 68, 186-201.	2.5	126
44	Inhibiting fungal multidrug resistance by disrupting an activator–Mediator interaction. Nature, 2016, 530, 485-489.	27.8	120
45	The Quorum-Sensing Molecules Farnesol/Homoserine Lactone and Dodecanol Operate via Distinct Modes of Action in Candida albicans. Eukaryotic Cell, 2011, 10, 1034-1042.	3.4	115
46	Resistance of Candida spp. to antifungal drugs in the ICU: where are we now?. Intensive Care Medicine, 2014, 40, 1241-1255.	8.2	111
47	Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resistance Updates, 2015, 23, 12-19.	14.4	109
48	The CRH Family Coding for Cell Wall Glycosylphosphatidylinositol Proteins with a Predicted Transglycosidase Domain Affects Cell Wall Organization and Virulence of Candida albicans. Journal of Biological Chemistry, 2006, 281, 40399-40411.	3.4	108
49	HIV-Protease Inhibitors Reduce Cell Adherence of Candida Albicans Strains by Inhibition of Yeast Secreted Aspartic Proteases. Journal of Investigative Dermatology, 1999, 113, 747-751.	0.7	107
50	Contribution of CgPDR1-Regulated Genes in Enhanced Virulence of Azole-Resistant Candida glabrata. PLoS ONE, 2011, 6, e17589.	2.5	107
51	Fluconazole plus Cyclosporine: a Fungicidal Combination Effective against Experimental Endocarditis Due to Candida albicans. Antimicrobial Agents and Chemotherapy, 2000, 44, 2932-2938.	3.2	106
52	Secreted Aspartic Proteinase Family of Candida tropicalis. Infection and Immunity, 2001, 69, 405-412.	2.2	100
53	Genetic Dissection of Azole Resistance Mechanisms in <i>Candida albicans</i> and Their Validation in a Mouse Model of Disseminated Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 1476-1483.	3.2	96
54	Molecular Mechanisms of Drug Resistance in Clinical Candida Species Isolated from Tunisian Hospitals. Antimicrobial Agents and Chemotherapy, 2013, 57, 3182-3193.	3.2	96

#	Article	IF	CITATIONS
55	Characterization of the alkane-inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: identification of a new P450 gene family. Gene, 1989, 76, 121-136.	2.2	94
56	Variability of Voriconazole Plasma Levels Measured by New High-Performance Liquid Chromatography and Bioassay Methods. Antimicrobial Agents and Chemotherapy, 2007, 51, 137-143.	3.2	94
57	Germ Tubes and Proteinase Activity Contribute to Virulence of <i>Candida albicans</i> in Murine Peritonitis. Infection and Immunity, 1999, 67, 6637-6642.	2.2	93
58	Isolation and nucleotide sequence of the extracellular acid protease gene (ACP) from the yeastCandida tropicalis. FEBS Letters, 1991, 286, 181-185.	2.8	90
59	Multiple resistance mechanisms to azole antifungals in yeast clinical isolates. Drug Resistance Updates, 1998, 1, 255-265.	14.4	87
60	Independent regulation of chitin synthase and chitinase activity in Candida albicans and Saccharomyces cerevisiae. Microbiology (United Kingdom), 2004, 150, 921-928.	1.8	87
61	Interrogation of Related Clinical Pan-Azole-Resistant Aspergillus fumigatus Strains: G138C, Y431C, and G434C Single Nucleotide Polymorphisms in <i>cyp51A</i> , Upregulation of <i>cyp51A</i> , and Integration and Activation of Transposon <i>Atf1</i> in the <i>cyp51A</i> Promoter. Antimicrobial Agents and Chemotherapy. 2011, 55, 5113-5121.	3.2	87
62	Azole Resistance by Loss of Function of the Sterol Δ ^{5,6} -Desaturase Gene (<i>ERG3</i>) in Candida albicans Does Not Necessarily Decrease Virulence. Antimicrobial Agents and Chemotherapy, 2012, 56, 1960-1968.	3.2	85
63	Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nature Communications, 2012, 3, 683.	12.8	84
64	Antifungal Quinoline Alkaloids from <i>Waltheria indica</i> . Journal of Natural Products, 2016, 79, 300-307.	3.0	83
65	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	3.2	81
66	Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nature Chemical Biology, 2016, 12, 867-875.	8.0	79
67	RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens <i>In Vivo</i> Applied to the Fungus Candida albicans. MBio, 2015, 6, e00942-15.	4.1	78
68	Overexpression of the MDR1 Gene Is Sufficient To Confer Increased Resistance to Toxic Compounds in Candida albicans. Antimicrobial Agents and Chemotherapy, 2006, 50, 1365-1371.	3.2	77
69	Functional Analysis of <i>cis</i> - and <i>trans</i> -Acting Elements of the <i>Candida albicans CDR2</i> Promoter with a Novel Promoter Reporter System. Eukaryotic Cell, 2009, 8, 1250-1267.	3.4	76
70	Distinct Roles of Candida albicans Drug Resistance Transcription Factors <i>TAC1</i> , <i>MRR1</i> , and <i>UPC2</i> in Virulence. Eukaryotic Cell, 2014, 13, 127-142.	3.4	76
71	Purification and properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. FEBS Journal, 1991, 195, 369-375.	0.2	74
72	Molecular Mechanisms of Action of Herbal Antifungal Alkaloid Berberine, in Candida albicans. PLoS ONE, 2014, 9, e104554.	2.5	73

#	Article	IF	CITATIONS
73	Identification of <i>Aspergillus fumigatus</i> multidrug transporter genes and their potential involvement in antifungal resistance. Medical Mycology, 2016, 54, 616-627.	0.7	70
74	Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albican strains. Journal of Antimicrobial Chemotherapy, 1998, 42, 747-753.	3.0	69
75	Identification and Characterization of Additional Members of the Cytochrome P450 Multigene FamilyCYP52ofCandida tropicalis. DNA and Cell Biology, 1992, 11, 767-780.	1.9	67
76	Identification of promoter elements responsible for the regulation of MDR1 from Candida albicans, a major facilitator transporter involved in azole resistance. Microbiology (United Kingdom), 2006, 152, 3701-3722.	1.8	67
77	Biocatalyst Engineering by Assembly of Fatty Acid Transport and Oxidation Activities for In Vivo Application of Cytochrome P-450 _{BM-3} Monooxygenase. Applied and Environmental Microbiology, 1998, 64, 3784-3790.	3.1	67
78	Asymmetric distribution of phosphatidylethanolamine inC. albicans : possible mediation byCDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily. Yeast, 1999, 15, 111-121.	1.7	66
79	Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance <i>in vivo</i> in <i>Candida albicans</i> orchestrated by multiple genetic alterations. Journal of Antimicrobial Chemotherapy, 2015, 70, 2551-2555.	3.0	64
80	Farnesol-Induced Apoptosis in Candida albicans Is Mediated by Cdr1-p Extrusion and Depletion of Intracellular Glutathione. PLoS ONE, 2011, 6, e28830.	2.5	63
81	Novel role of a family of major facilitator transporters in biofilm development and virulence of <i>Candida albicans</i> . Biochemical Journal, 2014, 460, 223-235.	3.7	62
82	Acquired Multidrug Antifungal Resistance in Candida lusitaniae during Therapy. Antimicrobial Agents and Chemotherapy, 2015, 59, 7715-7722.	3.2	62
83	Comparative Genomics of Two Sequential <i>Candida glabrata</i> Clinical Isolates. G3: Genes, Genomes, Genetics, 2017, 7, 2413-2426.	1.8	62
84	Molecular Mechanisms of Itraconazole Resistance in Candida dubliniensis. Antimicrobial Agents and Chemotherapy, 2003, 47, 2424-2437.	3.2	61
85	Clinical relevance of mechanisms of antifungal drug resistance in yeasts. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2002, 20, 462-470.	0.5	59
86	Persistent Candida albicans colonization and molecular mechanisms of azole resistance in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients. Journal of Antimicrobial Chemotherapy, 2010, 65, 2505-2513.	3.0	59
87	Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms. Antimicrobial Agents and Chemotherapy, 2016, 60, 229-238.	3.2	59
88	Gain-of-Function Mutations in <i>PDR1</i> , a Regulator of Antifungal Drug Resistance in Candida glabrata, Control Adherence to Host Cells. Infection and Immunity, 2013, 81, 1709-1720.	2.2	57
89	Secreted Aspartyl Proteinases and Interactions of <i>Candida albicans</i> with Human Endothelial Cells. Infection and Immunity, 1998, 66, 3003-3005.	2.2	56
90	Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS Yeast Research, 2015, 15, fov025.	2.3	54

#	Article	IF	CITATIONS
91	Characterization of a second alkane-inducible cytochrome P450-encoding gene, CYP52A2, from Candida tropicalis. Gene, 1991, 106, 51-60.	2.2	52
92	Azole Resistance of Environmental and Clinical Aspergillus fumigatus Isolates from Switzerland. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	52
93	Analysis of Natural Variants of the Human Immunodeficiency Virus Type 1 gag-pol Frameshift Stem-Loop Structure. Journal of Virology, 2002, 76, 7868-7873.	3.4	51
94	Fungicidal Synergism of Fluconazole and Cyclosporine in Candida albicans Is Not Dependent on Multidrug Efflux Transporters Encoded by the CDR1 , CDR2 , CaMDR1 , and FLU1 Genes. Antimicrobial Agents and Chemotherapy, 2003, 47, 1565-1570.	3.2	50
95	Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis. Biochemical and Biophysical Research Communications, 1987, 144, 251-257.	2.1	49
96	Comparative Genomics Suggests that the Fungal Pathogen Pneumocystis Is an Obligate Parasite Scavenging Amino Acids from Its Host's Lungs. PLoS ONE, 2010, 5, e15152.	2.5	49
97	Acid Proteinase Secreted by Candida Tropicalis: Functional Analysis of Preproregion Cleavages in C. Tropicalis and Saccharomyces Cerevisiae. Microbiology (United Kingdom), 1996, 142, 493-503.	1.8	48
98	Identification and Functional Characterization of Rca1, a Transcription Factor Involved in both Antifungal Susceptibility and Host Response in Candida albicans. Eukaryotic Cell, 2012, 11, 916-931.	3.4	47
99	Potential Use of MALDI-ToF Mass Spectrometry for Rapid Detection of Antifungal Resistance in the Human Pathogen Candida glabrata. Scientific Reports, 2017, 7, 9099.	3.3	47
100	The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast. PLoS Pathogens, 2012, 8, e1002485.	4.7	46
101	In Vivo Systematic Analysis of Candida albicans Zn2-Cys6 Transcription Factors Mutants for Mice Organ Colonization. PLoS ONE, 2011, 6, e26962.	2.5	44
102	Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models. Frontiers in Microbiology, 2015, 06, 367.	3.5	44
103	Accumulation of 3-Ketosteroids Induced by Itraconazole in Azole-Resistant Clinical <i>Candida albicans</i> Isolates. Antimicrobial Agents and Chemotherapy, 1999, 43, 2663-2670.	3.2	43
104	Reliability of the Vitek 2 Yeast Susceptibility Test for Detection of In Vitro Resistance to Fluconazole and Voriconazole in Clinical Isolates of <i>Candida albicans</i> and <i>Candida glabrata</i> . Journal of Clinical Microbiology, 2009, 47, 1927-1930.	3.9	43
105	Genome-wide expression profiling of the response to short-term exposure to fluconazole in Cryptococcus neoformans serotype A. BMC Microbiology, 2011, 11, 97.	3.3	43
106	Implications of the EUCAST Trailing Phenomenon in Candida tropicalis for the <i>In Vivo</i> Susceptibility in Invertebrate and Murine Models. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	43
107	Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. Journal of Biological Chemistry, 2018, 293, 412-432.	3.4	42
108	Persistence of Candida albicans in the Oral Mucosa Induces a Curbed Inflammatory Host Response That Is Independent of Immunosuppression. Frontiers in Immunology, 2019, 10, 330.	4.8	42

#	Article	IF	CITATIONS
109	Milbemycins: More than Efflux Inhibitors for Fungal Pathogens. Antimicrobial Agents and Chemotherapy, 2013, 57, 873-886.	3.2	41
110	Isolation of the Candida tropicalis gene for P450 lanosterol demethylase and its expression in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 1987, 146, 1311-1317.	2.1	40
111	Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology (United Kingdom), 2005, 151, 3381-3394.	1.8	39
112	The <i>Candida albicans</i> plasma membrane protein Rch1p, a member of the vertebrate SLC10 carrier family, is a novel regulator of cytosolic Ca2+ homoeostasis. Biochemical Journal, 2012, 444, 497-502.	3.7	39
113	Reduced Azole Susceptibility in Genotype 3 Candida dubliniensis Isolates Associated with Increased Cd CDR1 and Cd CDR2 Expression. Antimicrobial Agents and Chemotherapy, 2005, 49, 1312-1318.	3.2	37
114	Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and) Tj ETQq0 0 0 r	gBT /Overl 1.8	ock 10 Tf 50 37
115	Upregulation of the Adhesin Gene <i>EPA1</i> Mediated by <i>PDR1</i> in Candida glabrata Leads to Enhanced Host Colonization. MSphere, 2016, 1, .	2.9	37
116	Comparative Genomics for the Elucidation of Multidrug Resistance in Candida lusitaniae. MBio, 2019, 10, .	4.1	37
117	Fermentative 2â€carbon metabolism produces carcinogenic levels of acetaldehyde in <i><scp>C</scp>andida albicans</i> . Molecular Oral Microbiology, 2013, 28, 281-291.	2.7	36
118	Novel <i>ERG11</i> and <i>TAC1b</i> Mutations Associated with Azole Resistance in Candida auris. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	36
119	Camphor and Eucalyptol—Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. International Journal of Molecular Sciences, 2021, 22, 483.	4.1	36
120	Flavones, Flavonols, and Glycosylated Derivatives—Impact on Candida albicans Growth and Virulence, Expression of CDR1 and ERG11, Cytotoxicity. Pharmaceuticals, 2021, 14, 27.	3.8	36
121	Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monooxygenase under varied dissolved oxygen concentrations. , 1999, 64, 333-341.		35
122	<i>In Vitro</i> Effect of Malachite Green on Candida albicans Involves Multiple Pathways and Transcriptional Regulators <i>UPC2</i> and <i>STP2</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 495-506.	3.2	35
123	Comprehensive approach for the detection of antifungal compounds using a susceptible strain of Candida albicans and confirmation of in vivo activity with the Galleria mellonella model. Phytochemistry, 2014, 105, 68-78.	2.9	35
124	Identification and Mode of Action of a Plant Natural Product Targeting Human Fungal Pathogens. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	35
125	Characterization of the Aspergillus nidulans biotin biosynthetic gene cluster and use of the bioDA gene as a new transformation marker. Fungal Genetics and Biology, 2011, 48, 208-215.	2.1	33
126	Finding the needle in a haystack: Mapping antifungal drug resistance in fungal pathogen by genomic approaches. PLoS Pathogens, 2019, 15, e1007478.	4.7	33

#	Article	IF	CITATIONS
127	Single-step extraction of fluconazole from plasma by ultra-filtration for the measurement of its free concentration by high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2002, 28, 645-651.	2.8	32
128	Machine Learning Approach for Candida albicans Fluconazole Resistance Detection Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Frontiers in Microbiology, 2019, 10, 3000.	3.5	32
129	Oxidation and Reduction in Lignin Biodegradation. ACS Symposium Series, 1989, , 454-471.	0.5	31
130	Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 192-203.	2.4	30
131	Identification and antifungal susceptibility of a large collection of yeast strains isolated in Tunisian hospitals. Medical Mycology, 2013, 51, 737-746.	0.7	30
132	Resistance and tolerance mechanisms to antifungal drugs in fungal pathogens. The Mycologist, 2003, 17, 74-78.	0.4	29
133	Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Biochemical Journal, 2016, 473, 1537-1552.	3.7	28
134	Heterogeneity within the alkane-inducible cytochrome P450 gene family of the yeast Candida tropicalis. FEBS Letters, 1989, 256, 128-134.	2.8	27
135	Anti- <i>Candida</i> Cassane-Type Diterpenoids from the Root Bark of <i>Swartzia simplex</i> . Journal of Natural Products, 2015, 78, 2994-3004.	3.0	27
136	Caspofungin activity against clinical isolates of azole cross-resistant Candida glabrata overexpressing efflux pump genes. Journal of Antimicrobial Chemotherapy, 2006, 58, 458-461.	3.0	26
137	PAP1 [poly(A) polymerase 1] homozygosity and hyperadenylation are major determinants of increased mRNA stability of CDR1 in azole-resistant clinical isolates of Candida albicans. Microbiology (United) Tj ETQq1 1	0.71884314	rg₿₫ /Overlo
138	Novel Macrocyclic Amidinoureas: Potent Non-Azole Antifungals Active against Wild-Type and Resistant Candida Species. ACS Medicinal Chemistry Letters, 2013, 4, 852-857.	2.8	26
139	Red-Shifted Firefly Luciferase Optimized for Candida albicans In vivo Bioluminescence Imaging. Frontiers in Microbiology, 2017, 8, 1478.	3.5	26
140	Sensitive Bioassay for Determination of Fluconazole Concentrations in Plasma Using a Candida albicans Mutant Hypersusceptible to Azoles. Antimicrobial Agents and Chemotherapy, 2001, 45, 696-700.	3.2	25
141	Single yeast cell nanomotions correlate with cellular activity. Science Advances, 2020, 6, eaba3139.	10.3	25
142	Adaptation of a <i>Gaussia princeps</i> Luciferase reporter system in <i>Candida albicans</i> for <i>in vivo</i> detection in the <i>Galleria mellonella</i> infection model. Virulence, 2015, 6, 684-693.	4.4	23
143	CaALK8, an alkane assimilating cytochrome P450, confers multidrug resistance when expressed in a hypersensitive strain ofCandida albicans. Yeast, 2001, 18, 1117-1129.	1.7	22
144	Three-dimensional models of 14α-sterol demethylase (Cyp51A) from Aspergillus lentulus and Aspergillus fumigatus: an insight into differences in voriconazole interaction. International Journal of Antimicrobial Agents, 2011, 38, 426-434.	2.5	22

#	Article	IF	CITATIONS
145	High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines. PLoS Genetics, 2016, 12, e1006374.	3.5	22
146	Ultra-Performance Liquid Chromatography Mass Spectrometry and Sensitive Bioassay Methods for Quantification of Posaconazole Plasma Concentrations after Oral Dosing. Antimicrobial Agents and Chemotherapy, 2010, 54, 5074-5081.	3.2	21
147	Roles of Cellular Respiration, Cg CDR1 , and Cg CDR2 in Candida glabrata Resistance to Histatin 5. Antimicrobial Agents and Chemotherapy, 2006, 50, 1100-1103.	3.2	20
148	Doxorubicin induces drug efflux pumps in <i>Candida albicans</i> . Medical Mycology, 2011, 49, 132-142.	0.7	20
149	Pivotal Role for a Tail Subunit of the RNA Polymerase II Mediator Complex CgMed2 in Azole Tolerance and Adherence in Candida glabrata. Antimicrobial Agents and Chemotherapy, 2014, 58, 5976-5986.	3.2	20
150	Probing the membrane topology of Candida tropicalis cytochrome P450. FEBS Journal, 1993, 216, 477-485.	0.2	19
151	A standardized toolkit for genetic engineering of CTG clade yeasts. Journal of Microbiological Methods, 2018, 144, 152-156.	1.6	19
152	Novel Acid Phosphatase in <i>Candida glabrata</i> Suggests Selective Pressure and Niche Specialization in the Phosphate Signal Transduction Pathway. Genetics, 2010, 186, 885-895.	2.9	18
153	Biological Characterization and in Vivo Assessment of the Activity of a New Synthetic Macrocyclic Antifungal Compound. Journal of Medicinal Chemistry, 2016, 59, 3854-3866.	6.4	18
154	Identification and Characterization of Mediators of Fluconazole Tolerance in Candida albicans. Frontiers in Microbiology, 2020, 11, 591140.	3.5	17
155	Disruption of the gene encoding the secreted acid protease (ACP) in the yeastCandida tropicalis. FEMS Microbiology Letters, 1992, 95, 149-156.	1.8	16
156	Link between Heat Shock Protein 90 and the Mitochondrial Respiratory Chain in the Caspofungin Stress Response of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	16
157	Deciphering the Mrr1/Mdr1 Pathway in Azole Resistance of Candida auris. Antimicrobial Agents and Chemotherapy, 2022, 66, e0006722.	3.2	15
158	Yeast Nanometric Scale Oscillations Highlights Fibronectin Induced Changes in C. albicans. Fermentation, 2020, 6, 28.	3.0	14
159	Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathogens, 2022, 18, e1010012.	4.7	14
160	Characterization of a New Clinical Yeast Species, Candida tunisiensis sp. nov., Isolated from a Strain Collection from Tunisian Hospitals. Journal of Clinical Microbiology, 2013, 51, 31-39.	3.9	13
161	Large-scale genome mining allows identification of neutral polymorphisms and novel resistance mutations in genes involved in Candida albicans resistance to azoles and echinocandins. Journal of Antimicrobial Chemotherapy, 2020, 75, 835-848.	3.0	13
162	Condition-specific series of metabolic sub-networks and its application for gene set enrichment analysis. Bioinformatics, 2019, 35, 2258-2266.	4.1	12

#	Article	IF	CITATIONS
163	Integrated antifungal drug discovery in Candida albicans. Nature Biotechnology, 2001, 19, 212-213.	17.5	10
164	Overcoming the heterologous bias: An in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata. Biochemical and Biophysical Research Communications, 2011, 404, 357-363.	2.1	10
165	Participation of the ABC Transporter CDR1 in Azole Resistance of Candida lusitaniae. Journal of Fungi (Basel, Switzerland), 2021, 7, 760.	3.5	10
166	ADH1 expression inversely correlates with CDR1 and CDR2 in Candida albicans from chronic oral candidosis in APECED (APS-I) patients. FEMS Yeast Research, 2011, 11, 494-498.	2.3	9
167	Using <i>in vivo</i> transcriptomics and RNA enrichment to identify genes involved in virulence of <i>Candida glabrata</i> . Virulence, 2022, 13, 1285-1303.	4.4	9
168	Revealing the astragalin mode of anticandidal action. EXCLI Journal, 2020, 19, 1436-1445.	0.7	8
169	Optimization of Candida tropicalis cytochrome P450alk gene expression in Saccharomyces cerevisiae with continuous cultures. Applied Microbiology and Biotechnology, 1991, 36, 48-60.	3.6	7
170	Molecular Principles of Antifungal Drug Resistance. , 0, , 197-212.		7
171	Diagnosis of Antifungal Drug Resistance Mechanisms in Fungal Pathogens: Transcriptional Gene Regulation. Current Fungal Infection Reports, 2011, 5, 157-167.	2.6	6
172	Repercussion of a deficiency in mitochondrial ß-oxidation on the carbon flux of short-chain fatty acids to the peroxisomal ß-oxidation cycle in Aspergillus nidulans. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1386-1392.	2.4	5
173	Voriconazole-Induced Inhibition of the Fungicidal Activity of Amphotericin B inCandidaStrains with Reduced Susceptibility to Voriconazole: an Effect Not Predicted by the MIC Value Alone. Antimicrobial Agents and Chemotherapy, 2011, 55, 1629-1637.	3.2	5
174	A New Endogenous Overexpression System of Multidrug Transporters of Candida albicans Suitable for Structural and Functional Studies. Frontiers in Microbiology, 2016, 7, 261.	3.5	5
175	Mechanisms of Drug Resistance in Candida albicans. , 2017, , 287-311.		5
176	Site-Directed Mutagenesis of the Saccharomyces cerevisiae Dihydropteroate Synthase FOL1 Gene to Study Pneumocystis jirovecii Mutations in the Orthologue Gene FAS. Journal of Eukaryotic Microbiology, 2003, 50, 652-653.	1.7	4
177	Novel Approaches for Fungal Transcriptomics from Host Samples. Frontiers in Microbiology, 2015, 6, 1571.	3.5	4
178	New Data on the <i>In Vitro</i> Activity of Fenticonazole against Fluconazole-Resistant <i>Candida</i> Species. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	4
179	Investigating Candida glabrata Urinary Tract Infections (UTIs) in Mice Using Bioluminescence Imaging. Journal of Fungi (Basel, Switzerland), 2021, 7, 844.	3.5	4
180	Assessment of the In Vitro and In Vivo Antifungal Activity of NSC319726 against Candida auris. Microbiology Spectrum, 2021, , e0139521.	3.0	4

#	Article	IF	CITATIONS
181	Insights in the molecular mechanisms of an azole stress adapted laboratory-generated Aspergillus fumigatus strain. Medical Mycology, 2021, 59, 763-772.	0.7	3
182	Hijacking Transposable Elements for Saturation Mutagenesis in Fungi. Frontiers in Fungal Biology, 2021, 2, .	2.0	3
183	How Yeast Antifungal Resistance Gene Analysis Is Essential to Validate Antifungal Susceptibility Testing Systems. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	3
184	The Swiss Society of Microbiology: Small Bugs, Big Questions and Cool Answers. Chimia, 2016, 70, 874.	0.6	2
185	Tracking the origin and evolution of multidrug resistance in Candida auris. Lancet Microbe, The, 2020, 1, e237.	7.3	2
186	Signaling Pathways Governing the Caspofungin Paradoxical Effect in Aspergillus fumigatus. MBio, 2020, 11, .	4.1	2
187	Function Analysis of MBF1, a Factor Involved in the Response to Amino Acid Starvation and Virulence in Candida albicans. Frontiers in Fungal Biology, 2021, 2, .	2.0	2
	Acquerin as a Liceful Calcium Sensing Reporter in Candida albicans, Journal of Fungi (Rasel) Ti ETOco O O rgRT	Duarlach 1	0 Tf 50 462

Aequorin as a Useful Calcium-Sensing Reporter in Candida albicans. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 462 T

189	Acquired Multidrug Antifungal Resistance in Candida lusitaniae During Therapy. Open Forum Infectious Diseases, 2015, 2, .	0.9	1
190	Identification of Antifungal Compounds from the Root Bark of Cordia anisophylla J.S. Mill Journal of the Brazilian Chemical Society, 2018, , .	0.6	1
191	Resistance to Antifungal Drugs. , 2011, , 135-151.		1
192	Identification of Triterpenoids from Schefflera systyla, Odontadenia puncticulosa and Conostegia speciosa and In Depth Investigation of Their in vitro and in vivo Antifungal Activities. Journal of the Brazilian Chemical Society, 2016, , .	0.6	0
193	Mechanisms of Multidrug Resistance in Fungal Pathogens. , 2010, , 327-358.		0
194	Drug Combinations as a Strategy to Potentiate Existing Antifungal Agents. , 2015, , 91-114.		0
195	Editorial: Antifungal Resistance: From Molecular to Global Issues. Frontiers in Cellular and Infection Microbiology, 2022, 12, 867398.	3.9	0