
Hongliang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4905903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis. Green Energy and Environment, 2023, 8, 224-232.	8.7	8
2	Operando generated copperâ€based catalyst enabling efficient electrosynthesis of 2,5â€bis(hydroxymethyl)furan. Fundamental Research, 2023, 3, 763-769.	3.3	7
3	Heterogeneous MoSe ₂ /Nitrogenâ€Dopedâ€Carbon Nanoarrays: Engineering Atomic Interface for Potassiumâ€Ion Storage. Advanced Functional Materials, 2022, 32, 2110223.	14.9	29
4	Dechlorination-facilitated deprotonation of CoFe (Oxy)hydroxide catalysts under electrochemical oxygen evolution. Chemical Engineering Science, 2022, 252, 117270.	3.8	4
5	Redirecting dynamic structural evolution of nickel-contained RuO2 catalyst during electrochemical oxygen evolution reaction. Journal of Energy Chemistry, 2022, 69, 330-337.	12.9	24
6	Dynamically Formed Surfactant Assembly at the Electrified Electrode–Electrolyte Interface Boosting CO ₂ Electroreduction. Journal of the American Chemical Society, 2022, 144, 6613-6622.	13.7	106
7	Achieving high-efficient urea oxidation via regulating the rate-determining step over a V single atom incorporated Co hydroxide electrocatalyst. Chemical Engineering Journal, 2022, 439, 135768.	12.7	22
8	<i>Operando</i> X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst. Energy and Environmental Science, 2021, 14, 906-915.	30.8	93
9	Tracking structural evolution: <i>operando</i> regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. National Science Review, 2021, 8, nwaa187.	9.5	50
10	BiPO ₄ â€Derived 2D Nanosheets for Efficient Electrocatalytic Reduction of CO ₂ to Liquid Fuel. Angewandte Chemie, 2021, 133, 7759-7763.	2.0	10
11	BiPO ₄ â€Derived 2D Nanosheets for Efficient Electrocatalytic Reduction of CO ₂ to Liquid Fuel. Angewandte Chemie - International Edition, 2021, 60, 7681-7685.	13.8	98
12	Efficient electrocatalytic formic acid oxidation over PdAu-manganese oxide/carbon. Journal of Colloid and Interface Science, 2021, 593, 244-250.	9.4	15
13	Synergistic Effect of Platinum Single Atoms and Nanoclusters Boosting Electrocatalytic Hydrogen Evolution. CCS Chemistry, 2021, 3, 2539-2547.	7.8	36
14	The Proportion of Feâ€N X , N Doping Species and Fe 3 C to Oxygen Catalytic Activity in Coreâ€Shell Feâ€N/C Electrocatalyst. Chemistry - an Asian Journal, 2020, 15, 310-318.	3.3	4
15	The Effect of the Coordination Environment of Atomically Dispersed Fe and N Coâ€doped Carbon Nanosheets on CO 2 Electroreduction. ChemElectroChem, 2020, 7, 4767-4772.	3.4	17
16	Sulfur Atomically Doped Bismuth Nanobelt Driven by Electrochemical Self-Reconstruction for Boosted Electrocatalysis. Journal of Physical Chemistry Letters, 2020, 11, 1746-1752.	4.6	23
17	Achieving Efficient Alkaline Hydrogen Evolution Reaction over a Ni ₅ P ₄ Catalyst Incorporating Singleâ€Atomic Ru Sites. Advanced Materials, 2020, 32, e1906972.	21.0	281
18	Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction. Applied Catalysis B: Environmental, 2020, 272, 118960.	20.2	53

HONGLIANG JIANG

#	Article	IF	CITATIONS
19	Confined Co ₉ S ₈ into a defective carbon matrix as a bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries. Catalysis Science and Technology, 2019, 9, 5757-5762.	4.1	6
20	Recent Progress in Defective Carbonâ€Based Oxygen Electrode Materials for Rechargeable Zinkâ€Air Batteries. Batteries and Supercaps, 2019, 2, 509-523.	4.7	41
21	Boosted Reactivity of Ammonia Borane Dehydrogenation over Ni/Ni ₂ P Heterostructure. Journal of Physical Chemistry Letters, 2019, 10, 1048-1054.	4.6	52
22	Tracking Structural Selfâ€Reconstruction and Identifying True Active Sites toward Cobalt Oxychloride Precatalyst of Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1805127.	21.0	211
23	Defective Carbon–CoP Nanoparticles Hybrids with Interfacial Charges Polarization for Efficient Bifunctional Oxygen Electrocatalysis. Advanced Energy Materials, 2018, 8, 1703623.	19.5	209
24	Atomic Iridium Incorporated in Cobalt Hydroxide for Efficient Oxygen Evolution Catalysis in Neutral Electrolyte. Advanced Materials, 2018, 30, e1707522.	21.0	247
25	Definitive Structural Identification toward Moleculeâ€Type Sites within 1D and 2D Carbonâ€Based Catalysts. Advanced Energy Materials, 2018, 8, 1800436.	19.5	23
26	1T′â€Mo _{1â^'<i>x</i>} W <i>_x</i> S ₂ /CdS Heterostructure Enabling Robust Photocatalytic Water Splitting: Unveiling the Interfacial Charge Polarization. Solar Rrl, 2018, 2, 1800032.	5.8	27
27	Exfoliation of ultrathin FePS ₃ layers as a promising electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2018, 54, 4481-4484.	4.1	63
28	Active Sites Engineering toward Superior Carbonâ€Based Oxygen Reduction Catalysts via Confinement Pyrolysis. Small, 2018, 14, e1800128.	10.0	36
29	Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis. Materials Today, 2018, 21, 602-610.	14.2	48
30	Integrated Flexible Electrode for Oxygen Evolution Reaction: Layered Double Hydroxide Coupled with Single-Walled Carbon Nanotubes Film. ACS Sustainable Chemistry and Engineering, 2018, 6, 2911-2915.	6.7	41
31	Highly Defective Fe-Based Oxyhydroxides from Electrochemical Reconstruction for Efficient Oxygen Evolution Catalysis. ACS Energy Letters, 2018, 3, 861-868.	17.4	92
32	High-metallic-phase-concentration Mo1–xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts. Nano Research, 2018, 11, 1687-1698.	10.4	37
33	Wellâ€Defined Cobalt Catalyst with Nâ€Doped Carbon Layers Enwrapping: The Correlation between Surface Atomic Structure and Electrocatalytic Property. Small, 2018, 14, 1702074.	10.0	56
34	Structural Self-Reconstruction of Catalysts in Electrocatalysis. Accounts of Chemical Research, 2018, 51, 2968-2977.	15.6	252
35	Confined bimetallic phosphide within P, N co-doped carbon layers towards boosted bifunctional oxygen catalysis. Journal of Materials Chemistry A, 2018, 6, 11281-11287.	10.3	40
36	Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst. ACS Energy Letters, 2018, 3, 1373-1380.	17.4	206

#	Article	IF	CITATIONS
37	Interfacial Roles: Defective Carbon–CoP Nanoparticles Hybrids with Interfacial Charges Polarization for Efficient Bifunctional Oxygen Electrocatalysis(Adv. Energy Mater. 18/2018). Advanced Energy Materials, 2018, 8, 1870087.	19.5	2
38	In Situ Growth of Cobalt Nanoparticles Encapsulated Nitrogenâ€Đoped Carbon Nanotubes among Ti ₃ C ₂ T <i>_x</i> (MXene) Matrix for Oxygen Reduction and Evolution. Advanced Materials Interfaces, 2018, 5, 1800392.	3.7	106
39	Electronic Structure Reconfiguration toward Pyrite NiS ₂ <i>via</i> Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano, 2017, 11, 11574-11583.	14.6	310
40	Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. Journal of Materials Chemistry A, 2016, 4, 1694-1701.	10.3	460
41	Hollow mesoporous NiCo ₂ O ₄ nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Transactions, 2015, 44, 4148-4154.	3.3	151
42	Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 12642-12645.	10.3	83
43	Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe–N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 2015, 7, 21511-21520.	8.0	262
44	Photoluminescent carbon–nitrogen quantum dots as efficient electrocatalysts for oxygen reduction. Nanoscale, 2015, 7, 2003-2008.	5.6	41
45	Enriched graphitic N-doped carbon-supported Fe ₃ O ₄ nanoparticles as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 7281-7287.	10.3	235
46	Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale, 2014, 6, 15080-15089.	5.6	509
47	Au@TiO2 double-shelled octahedral nanocages with improved catalytic properties. Dalton Transactions, 2014, 43, 15111-15118.	3.3	10
48	3D nitrogen-doped graphene foams embedded with ultrafine TiO2 nanoparticles for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11124.	10.3	78
49	Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. Journal of Materials Chemistry A, 2014, 2, 9040.	10.3	170
50	Activated nitrogen-doped carbon nanofibers with hierarchical pore as efficient oxygen reduction reaction catalyst for microbial fuel cells. Journal of Power Sources, 2014, 266, 36-42.	7.8	113
51	Hierarchical porous iron and nitrogen co-doped carbons as efficient oxygen reduction electrocatalysts in neutral media. Journal of Power Sources, 2014, 265, 246-253.	7.8	59
52	Nitrogen and Phosphorus Dualâ€Doped Hierarchical Porous Carbon Foams as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reactions. Chemistry - A European Journal, 2014, 20, 3106-3112.	3.3	179
53	Facile and controllable fabrication of three-dimensionally quasi-ordered macroporous TiO2 for high performance lithium-ion battery applications. New Journal of Chemistry, 2013, 37, 1578.	2.8	33
54	Hierarchical interconnected macro-/mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2013, 1, 12074.	10.3	59

HONGLIANG JIANG

#	Article	IF	CITATIONS
55	Multifunctional manganese-doped core–shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells. New Journal of Chemistry, 2013, 37, 3076.	2.8	22
56	Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel. New Journal of Chemistry, 2012, 36, 1051.	2.8	37
57	Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor. Chemical Communications, 2011, 47, 5530-5532.	4.1	36
58	Solvent-assisted poly(vinyl alcohol) gelated crystalline colloidal array photonic crystals. Soft Matter, 2011, 7, 915-921.	2.7	27