Thierry Langer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4905297/publications.pdf

Version: 2024-02-01

225 papers 11,177 citations

²⁶⁵⁶⁷ 56 h-index

96 g-index

261 all docs

261 does citations

times ranked

261

10448 citing authors

#	Article	IF	CITATIONS
1	Tricyclic antipsychotics and antidepressants can inhibit α5â€containing GABA _A receptors by two distinct mechanisms. British Journal of Pharmacology, 2022, 179, 3675-3692.	2.7	7
2	Design, Synthesis, and Biological Evaluation of 4,4'-Difluorobenzhydrol Carbamates as Selective M1 Antagonists. Pharmaceuticals, 2022, 15, 248.	1.7	4
3	Molecular Mingling: Multimodal Predictions of Ligand Promiscuity in Pentameric Ligand-Gated Ion Channels. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	10
4	Synthesis, Biological Evaluation, and Docking Studies of Antagonistic Hydroxylated Arecaidine Esters Targeting mAChRs. Molecules, 2022, 27, 3173.	1.7	4
5	Improving Small Molecule pKa Prediction Using Transfer Learning With Graph Neural Networks. Frontiers in Chemistry, 2022, 10, .	1.8	10
6	A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules, 2022, 12, 881.	1.8	14
7	Identification of repurposing therapeutics toward SARS-CoV-2 main protease by virtual screening. PLoS ONE, 2022, 17, e0269563.	1.1	9
8	In Silico Identification of Potential Druggable Binding Sites on CIN85 SH3 Domain. International Journal of Molecular Sciences, 2021, 22, 534.	1.8	4
9	Structural Insights into the Mechanisms of Action of Functionally Distinct Classes of Chikungunya Virus Nonstructural Protein 1 Inhibitors. Antimicrobial Agents and Chemotherapy, 2021, 65, e0256620.	1.4	9
10	Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals, 2021, 14, 530.	1.7	11
11	Reinstatement of synaptic plasticity in the aging brain through specific dopamine transporter inhibition. Molecular Psychiatry, 2021, 26, 7076-7090.	4.1	19
12	Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors. International Journal of Molecular Sciences, 2021, 22, 7714.	1.8	11
13	Antivirals against the Chikungunya Virus. Viruses, 2021, 13, 1307.	1.5	32
14	QPHAR: quantitative pharmacophore activity relationship: method and validation. Journal of Cheminformatics, 2021, 13, 57.	2.8	8
15	In vitro and in silico studies of holothurin A on androgen receptor in prostate cancer. Journal of Biomolecular Structure and Dynamics, 2021, , 1-9.	2.0	5
16	Consecutive and Selective Double Methylene Insertion of Lithium Carbenoids to Isothiocyanates: A Direct Assembly of Fourâ€Membered Sulfurâ€Containing Cycles. Angewandte Chemie - International Edition, 2021, 60, 24854-24858.	7.2	20
17	Improved Lipophilicity and Aqueous Solubility Prediction with Composite Graph Neural Networks. Molecules, 2021, 26, 6185.	1.7	14
18	Greedy 3-Point Search (G3PS)â€"A Novel Algorithm for Pharmacophore Alignment. Molecules, 2021, 26, 7201.	1.7	1

#	Article	IF	CITATIONS
19	Cognitive profiling and proteomic analysis of the modafinil analogue S-CE-123 in experienced aged rats. Scientific Reports, 2021, 11, 23962.	1.6	5
20	A Combination of Pharmacophore and Dockingâ€based Virtual Screening to Discover new Tyrosinase Inhibitors. Molecular Informatics, 2020, 39, e1900054.	1.4	14
21	Multiple Virtual Screening Strategies for the Discovery of Novel Compounds Active Against Dengue Virus: A Hit Identification Study. Scientia Pharmaceutica, 2020, 88, 2.	0.7	24
22	Structure–Activity Relationships of Novel Thiazole-Based Modafinil Analogues Acting at Monoamine Transporters. Journal of Medicinal Chemistry, 2020, 63, 391-417.	2.9	23
23	A Computational Approach to Identify Potential Novel Inhibitors against the Coronavirus SARS oVâ€2. Molecular Informatics, 2020, 39, e2000090.	1.4	28
24	A Novel Series of [1,2,4]Triazolo[4,3-a]Pyridine Sulfonamides as Potential Antimalarial Agents: In Silico Studies, Synthesis and In Vitro Evaluation. Molecules, 2020, 25, 4485.	1.7	9
25	Methylation of Methyl 4-Hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate: Synthetic, Crystallographic, and Molecular Docking Studies. Molecules, 2020, 25, 4238.	1.7	2
26	Chemoselective Homologation–Deoxygenation Strategy Enabling the Direct Conversion of Carbonyls into (<i>n+1</i>)-Halomethyl-Alkanes. Organic Letters, 2020, 22, 7629-7634.	2.4	23
27	A compact review of molecular property prediction with graph neural networks. Drug Discovery Today: Technologies, 2020, 37, 1-12.	4.0	182
28	Novel Class of Chikungunya Virus Small Molecule Inhibitors That Targets the Viral Capping Machinery. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	15
29	Identification of 2-(4-(Phenylsulfonyl)piperazine-1-yl)pyrimidine Analogues as Novel Inhibitors of Chikungunya Virus. ACS Medicinal Chemistry Letters, 2020, 11, 906-912.	1.3	16
30	Applications of the Pharmacophore Concept in Natural Product inspired Drug Design. Molecular Informatics, 2020, 39, e2000059.	1.4	42
31	Differences in Hypothalamic Lipid Profiles of Young and Aged Male Rats With Impaired and Unimpaired Spatial Cognitive Abilities and Memory. Frontiers in Aging Neuroscience, 2020, 12, 204.	1.7	9
32	A-ring and E-ring modifications of the cytotoxic alkaloid Luotonin A: Synthesis, computational and biological studies. Bioorganic and Medicinal Chemistry, 2020, 28, 115443.	1.4	3
33	Crystal structure, Hirshfeld analysis and a molecular docking study of a new inhibitor of the Hepatitis B virus (HBV): ethyl 5-methyl-1,1-dioxo-2-{[5-(pentan-3-yl)-1,2,4-oxadiazol-3-yl]methyl}-2 <i>H</i> -1,2,6-thiadiazine-4-carboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 12-17.	0.2	2
34	Fluoxetine Inhibits Enterovirus Replication by Targeting the Viral 2C Protein in a Stereospecific Manner. ACS Infectious Diseases, 2019, 5, 1609-1623.	1.8	50
35	Synthesis, X-ray Crystal Structure, Hirshfeld Surface Analysis, and Molecular Docking Study of Novel Hepatitis B (HBV) Inhibitor: 8-Fluoro-5-(4-fluorobenzyl)-3-(2-methoxybenzyl)-3,5-dihydro-4H-pyrimido[5,4-b]indol-4-one. Crystals, 2019. 9, 379.	1.0	5
36	The Novel Atypical Dopamine Uptake Inhibitor (S)-CE-123 Partially Reverses the Effort-Related Effects of the Dopamine Depleting Agent Tetrabenazine and Increases Progressive Ratio Responding. Frontiers in Pharmacology, 2019, 10, 682.	1.6	35

3

#	Article	IF	CITATIONS
37	Computational Identification of Novel Kir6 Channel Inhibitors. Frontiers in Pharmacology, 2019, 10, 549.	1.6	5
38	Synthesis, X-ray crystal structure, Hirshfeld surface analysis, and molecular docking study of novel inhibitor of hepatitis B: methyl 4-fluoro-3-(morpholinosulfonyl)benzo[b]thiophene-2-carboxylate. Heliyon, 2019, 5, e02738.	1.4	11
39	<p>Cytotoxicity Of Chalcone Of Eugenia aquea Burm F. Leaves Against T47D Breast Cancer Cell Lines And Its Prediction As An Estrogen Receptor Antagonist Based On Pharmacophore-Molecular Dynamics Simulation</p> . Advances and Applications in Bioinformatics and Chemistry. 2019. Volume 12. 33-43.	1.6	7
40	Synthesis, Single Crystal X-Ray Analysis, Prediction and Study of Pharmacological Activity of 4-(1H-Benzo[d]imidazol-2-yl)-1-Phenyl-1H-1,2,3-triazol-5-Amine and Its Solvates. Crystals, 2019, 9, 644.	1.0	2
41	LigandScout Remote: A New User-Friendly Interface for HPC and Cloud Resources. Journal of Chemical Information and Modeling, 2019, 59, 31-37.	2.5	6
42	A Straightforward Homologation of Carbon Dioxide with Magnesium Carbenoids en Route to αâ€Halocarboxylic Acids. Advanced Synthesis and Catalysis, 2019, 361, 1001-1006.	2.1	9
43	Modular and Chemoselective Strategy for the Direct Access to α-Fluoroepoxides and Aziridines via the Addition of Fluoroiodomethyllithium to Carbonyl-Like Compounds. Organic Letters, 2019, 21, 584-588.	2.4	65
44	Discovery of Potent Inhibitors for the Large Neutral Amino Acid Transporter 1 (LAT1) by Structure-Based Methods. International Journal of Molecular Sciences, 2019, 20, 27.	1.8	38
45	Sustainable Asymmetric Organolithium Chemistry: Enantio―and Chemoselective Acylations through Recycling of Solvent, Sparteine, and Weinreb "Amine― ChemSusChem, 2019, 12, 1147-1154.	3.6	23
46	Telescoped, Divergent, Chemoselective C1 and C1â€C1 Homologation of Imine Surrogates: Access to Quaternary Chloro†and Halomethylâ€Trifluoromethyl Aziridines. Angewandte Chemie - International Edition, 2019, 58, 2479-2484.	7.2	64
47	Design, Synthesis, and Pharmacological Evaluation of Novel $\hat{l}^22/3$ Subunit-Selective \hat{l}^3 -Aminobutyric Acid Type A (GABA _A) Receptor Modulators. Journal of Medicinal Chemistry, 2019, 62, 317-341.	2.9	9
48	The Pharmacophore Concept and Its Applications in Computer-Aided Drug Design. Progress in the Chemistry of Organic Natural Products, 2019, 110, 99-141.	0.8	38
49	A daily single dose of a novel modafinil analogue CE-123 improves memory acquisition and memory retrieval. Behavioural Brain Research, 2018, 343, 83-94.	1.2	25
50	Pharmacophore-based discovery of 2-(phenylamino)aceto-hydrazides as potent eosinophil peroxidase (EPO) inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1529-1536.	2.5	3
51	GRAIL: GRids of phArmacophore Interaction fieLds. Journal of Chemical Theory and Computation, 2018, 14, 4958-4970.	2.3	15
52	The Use of Dynamic Pharmacophore in Computer-Aided Hit Discovery: A Case Study. Methods in Molecular Biology, 2018, 1824, 317-333.	0.4	1
53	In Silico Workflow for the Discovery of Natural Products Activating the G Protein-Coupled Bile Acid Receptor 1. Frontiers in Chemistry, 2018, 6, 242.	1.8	16
54	Pharmacy Practice and Education in Austria. Pharmacy (Basel, Switzerland), 2018, 6, 55.	0.6	5

#	Article	IF	CITATIONS
55	SAR-Guided Scoring Function and Mutational Validation Reveal the Binding Mode of CGS-8216 at the $\hat{l}\pm 1+\hat{l}^32\hat{a}$ Benzodiazepine Site. Journal of Chemical Information and Modeling, 2018, 58, 1682-1696.	2.5	5
56	The Mu.Ta.Lig. Chemotheca: A Community-Populated Molecular Database for Multi-Target Ligands Identification and Compound-Repurposing. Frontiers in Chemistry, 2018, 6, 130.	1.8	13
57	Conformational Sampling of Small Molecules With iCon: Performance Assessment in Comparison With OMEGA. Frontiers in Chemistry, 2018, 6, 229.	1.8	43
58	Binding investigation and preliminary optimisation of the 3-amino-1,2,4-triazin-5(2 <i>H</i>)-one core for the development of new Fyn inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 956-961.	2.5	27
59	Homologation of halostannanes with carbenoids: a convenient and straightforward one-step access to $\hat{l}\pm$ -functionalized organotin reagents. Chemical Communications, 2018, 54, 10112-10115.	2.2	18
60	EFMCâ€ASMC Kongress in Wien. Nachrichten Aus Der Chemie, 2018, 66, 563-563.	0.0	0
61	Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2017, 57, 365-385.	2.5	59
62	A Molecular Dynamics–Shared Pharmacophore Approach to Boost Earlyâ€Enrichment Virtual Screening: A Case Study on Peroxisome Proliferatorâ€Activated Receptor α. ChemMedChem, 2017, 12, 1399-1407.	1.6	23
63	A novel heterocyclic compound improves working memory in the radial arm maze and modulates the dopamine receptor D1R in frontal cortex of the Sprague-Dawley rat. Behavioural Brain Research, 2017, 332, 308-315.	1.2	11
64	Recent advancements on the use of 2-methyltetrahydrofuran in organometallic chemistry. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2017, 148, 37-48.	0.9	84
65	Efficient Access to Allâ€Carbon Quaternary and Tertiary αâ€Functionalized Homoallylâ€type Aldehydes from Ketones. Angewandte Chemie, 2017, 129, 12851-12856.	1.6	23
66	Heterocyclic Analogues of Modafinil as Novel, Atypical Dopamine Transporter Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 9330-9348.	2.9	26
67	Exploiting a "Beast―in Carbenoid Chemistry: Development of a Straightforward Direct Nucleophilic Fluoromethylation Strategy. Journal of the American Chemical Society, 2017, 139, 13648-13651.	6.6	104
68	Efficient Access to Allâ€Carbon Quaternary and Tertiary αâ€Functionalized Homoallylâ€type Aldehydes from Ketones. Angewandte Chemie - International Edition, 2017, 56, 12677-12682.	7.2	71
69	Evidence and isolation of tetrahedral intermediates formed upon the addition of lithium carbenoids to Weinreb amides and N-acylpyrroles. Chemical Communications, 2017, 53, 9498-9501.	2.2	52
70	Molecular Docking and 3D-Pharmacophore Modeling to Study the Interactions of Chalcone Derivatives with Estrogen Receptor Alpha. Pharmaceuticals, 2017, 10, 81.	1.7	52
71	A Novel Dopamine Transporter Inhibitor CE-123 Improves Cognitive Flexibility and Maintains Impulsivity in Healthy Male Rats. Frontiers in Behavioral Neuroscience, 2017, 11, 222.	1.0	24
72	R-Modafinil exerts weak effects on spatial memory acquisition and dentate gyrus synaptic plasticity. PLoS ONE, 2017, 12, e0179675.	1.1	15

#	Article	IF	Citations
73	Pharmacophore Models Derived from Molecular Dynamics Simulations of Protein-Ligand Complexes: A Case Study. Natural Product Communications, 2016, 11, 1934578X1601101.	0.2	2
74	The use of the Comins-Meyers Amide in Synthetic Chemistry: An Overview. Natural Product Communications, 2016, 11, 1934578X1601101.	0.2	4
75	A novel heterocyclic compound targeting the dopamine transporter improves performance in the radial arm maze and modulates dopamine receptors D1-D3. Behavioural Brain Research, 2016, 312, 127-137.	1.2	11
76	Chemoselective Addition of Halomethyllithiums to Functionalized Isatins: A Straightforward Access to Spiroâ€Epoxyoxindoles. Advanced Synthesis and Catalysis, 2016, 358, 172-177.	2.1	47
77	Discovery of <i>Mycobacterium tuberculosis</i> InhA Inhibitors by Binding Sites Comparison and Ligands Prediction. Journal of Medicinal Chemistry, 2016, 59, 11069-11078.	2.9	26
78	Chemoselective Schwartz Reagent Mediated Reduction of Isocyanates to Formamides. Organic Letters, 2016, 18, 2750-2753.	2.4	70
79	Highly efficient synthesis of functionalized \hat{l}_{\pm} -oxyketones via Weinreb amides homologation with \hat{l}_{\pm} -oxygenated organolithiums. Chemical Communications, 2016, 52, 7584-7587.	2.2	44
80	Fragment pharmacophore-based <i>in silico</i> screening: a powerful approach for efficient lead discovery. MedChemComm, 2016, 7, 506-511.	3.5	6
81	Evaluating the stability of pharmacophore features using molecular dynamics simulations. Biochemical and Biophysical Research Communications, 2016, 470, 685-689.	1.0	26
82	Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations. Monatshefte FÃ $^1\!\!/4$ r Chemie, 2016, 147, 553-563.	0.9	15
83	A heterocyclic compound CE-103 inhibits dopamine reuptake and modulates dopamine transporter and dopamine D1-D3 containing receptor complexes. Neuropharmacology, 2016, 102, 186-196.	2.0	13
84	Identification of the putative binding pocket of valerenic acid on GABA A receptors using docking studies and siteâ€directed mutagenesis. British Journal of Pharmacology, 2015, 172, 5403-5413.	2.7	28
85	A Robust, Ecoâ€Friendly Access to Secondary Thioamides through the Addition of Organolithium Reagents to Isothiocyanates in Cyclopentyl Methyl Ether (CPME). Chemistry - A European Journal, 2015, 21, 18966-18970.	1.7	38
86	Design, Virtual Screening, and Synthesis of Antagonists of \hat{l}_{\pm} sub>IIb \hat{l}^{2} sub>3 as Antiplatelet Agents. Journal of Medicinal Chemistry, 2015, 58, 7681-7694.	2.9	22
87	Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry, 2015, 114, 114-124.	1.4	31
88	Rational Drug Design Paradigms: The Odyssey for Designing Better Drugs. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 238-256.	0.6	8
89	Thienoquinolines as Novel Disruptors of the PKCε/RACK2 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2014, 57, 3235-3246.	2.9	26
90	Recognizing Pitfalls in Virtual Screening: A Critical Review. Journal of Chemical Information and Modeling, 2012, 52, 867-881.	2.5	358

#	Article	IF	Citations
91	Barbituric acid derivative BAS 02104951 inhibits PKCÂ, PKCÂ, PKCÂ/RACK2 interaction, Elk-1 phosphorylation in HeLa and PKC and translocation in PC3 cells following TPA-induction. Journal of Biochemistry, 2011, 149, 331-336.	0.9	9
92	Identification of chemically diverse, novel inhibitors of $17\hat{l}^2$ -hydroxysteroid dehydrogenase type 3 and 5 by pharmacophore-based virtual screening. Journal of Steroid Biochemistry and Molecular Biology, 2011, 125, 148-161.	1.2	33
93	Pharmacophores for medicinal chemists: a personal view. Future Medicinal Chemistry, 2011, 3, 901-904.	1.1	9
94	Applications of Integrated Data Mining Methods to Exploring Natural Product Space for Acetylcholinesterase Inhibitors. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 54-66.	0.6	18
95	The UV-filter benzophenone-1 inhibits $17\hat{l}^2$ -hydroxysteroid dehydrogenase type 3: Virtual screening as a strategy to identify potential endocrine disrupting chemicals. Biochemical Pharmacology, 2010, 79, 1189-1199.	2.0	78
96	Pharmacophores in Drug Research. Molecular Informatics, 2010, 29, 470-475.	1.4	51
97	Synthesis, semipreparative HPLC separation, biological evaluation, and 3D-QSAR of hydrazothiazole derivatives as human monoamine oxidase B inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 5063-5070.	1.4	44
98	Morphinans and isoquinolines: Acetylcholinesterase inhibition, pharmacophore modeling, and interaction with opioid receptors. Bioorganic and Medicinal Chemistry, 2010, 18, 5071-5080.	1.4	46
99	Epidermis-Type Lipoxygenase 3 Regulates Adipocyte Differentiation and Peroxisome Proliferator-Activated Receptor γ Activity. Molecular and Cellular Biology, 2010, 30, 4077-4091.	1.1	45
100	<i>In silico</i> Target Fishing for Rationalized Ligand Discovery Exemplified on Constituents of <i>Ruta graveolens</i> L Planta Medica, 2009, 75, 293-293.	0.7	0
101	<i>In silico</i> Target Fishing for Rationalized Ligand Discovery Exemplified on Constituents of <i>Ruta graveolens</i> Planta Medica, 2009, 75, 195-204.	0.7	131
102	Structureâ€Based Optimization of Benzoic Acids as Inhibitors of Protein Tyrosine Phosphatase 1B and Low Molecular Weight Protein Tyrosine Phosphatase. ChemMedChem, 2009, 4, 957-962.	1.6	32
103	5-Arylidene-2-phenylimino-4-thiazolidinones as PTP1B and LMW-PTP inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 1928-1937.	1.4	79
104	Synthesis, activity and molecular modeling of a new series of chromones as low molecular weight protein tyrosine phosphatase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 2658-2672.	1.4	44
105	Hydrogen-Bonding Patterns of Minor Groove-Binderâ^DNA Complexes Reveal Criteria for Discovery of New Scaffolds. Journal of Chemical Information and Modeling, 2009, 49, 1063-1069.	2.5	11
106	Hit finding: towards â€~smarter' approaches. Current Opinion in Pharmacology, 2009, 9, 589-593.	1.7	24
107	Discovery of Novel CB ₂ Receptor Ligands by a Pharmacophore-Based Virtual Screening Workflow. Journal of Medicinal Chemistry, 2009, 52, 369-378.	2.9	37
108	Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—What can we learn from earlier mistakes?. Journal of Computer-Aided Molecular Design, 2008, 22, 213-228.	1.3	330

#	Article	IF	CITATIONS
109	Sequenceâ€Specific Positions of Water Molecules at the Interface between DNA and Minor Groove Binders. ChemPhysChem, 2008, 9, 2766-2771.	1.0	14
110	Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives. Bioorganic and Medicinal Chemistry, 2008, 16, 5840-5852.	1.4	58
111	Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discovery Today, 2008, 13, 23-29.	3.2	287
112	Virtual screening for the discovery of bioactive natural products., 2008, 65, 211-249.		94
113	Discovery of Novel PPAR Ligands by a Virtual Screening Approach Based on Pharmacophore Modeling, 3D Shape, and Electrostatic Similarity Screening. Journal of Medicinal Chemistry, 2008, 51, 6303-6317.	2.9	65
114	3D Quantitative Structure–Property Relationships. , 2008, , 587-604.		10
115	Structure-Based Virtual Screening for the Discovery of Natural Inhibitors for Human Rhinovirus Coat Protein. Journal of Medicinal Chemistry, 2008, 51, 842-851.	2.9	83
116	Discovery of Nonsteroidal $17\hat{l}^2$ -Hydroxysteroid Dehydrogenase 1 Inhibitors by Pharmacophore-Based Screening of Virtual Compound Libraries. Journal of Medicinal Chemistry, 2008, 51, 4188-4199.	2.9	55
117	The Protein Data Bank (PDB), Its Related Services and Software Tools as Key Components for In Silico Guided Drug Discovery. Journal of Medicinal Chemistry, 2008, 51, 7021-7040.	2.9	91
118	Discovery of Novel Cathepsin S Inhibitors by Pharmacophore-Based Virtual High-Throughput Screening. Journal of Chemical Information and Modeling, 2008, 48, 1693-1705.	2.5	25
119	In Silico Screening. , 2008, , 210-227.		4
120	Enhancing Drug Discovery Through In Silico Screening: Strategies to Increase True Positives Retrieval Rates. Current Medicinal Chemistry, 2008, 15, 2040-2053.	1.2	76
121	Pharmacophore-based Virtual Screening in Drug Discovery. , 2008, , 76-119.		10
122	Pharmacophore-Based Screening for the Successful Identification of Bio-Active Natural Products. Chimia, 2007, 61, 350-354.	0.3	6
123	Parallel Screening and Activity Profiling with HIV Protease Inhibitor Pharmacophore Models. Journal of Chemical Information and Modeling, 2007, 47, 563-571.	2.5	52
124	Fast and Efficient in Silico 3D Screening:  Toward Maximum Computational Efficiency of Pharmacophore-Based and Shape-Based Approaches. Journal of Chemical Information and Modeling, 2007, 47, 2182-2196.	2.5	69
125	DNA Minor Groove Pharmacophores Describing Sequence Specific Properties. Journal of Chemical Information and Modeling, 2007, 47, 1580-1589.	2.5	27
126	Design, synthesis, and SAR analysis of novel selective $\dagger f1$ ligands. Bioorganic and Medicinal Chemistry, 2007, 15, 771-783.	1.4	30

#	Article	IF	Citations
127	5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases. Bioorganic and Medicinal Chemistry, 2007, 15, 5137-5149.	1.4	104
128	Evaluation of in vitro aldose redutase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3886-3893.	1.0	54
129	High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening. Journal of Computer-Aided Molecular Design, 2007, 20, 703-715.	1.3	52
130	Efficient overlay of small organic molecules using 3D pharmacophores. Journal of Computer-Aided Molecular Design, 2007, 20, 773-788.	1.3	265
131	Generation of a homology model of the human histamine H3 receptor for ligand docking and pharmacophore-based screening. Journal of Computer-Aided Molecular Design, 2007, 21, 437-453.	1.3	68
132	Pharmacophore modeling and parallel screening for PPAR ligands. Journal of Computer-Aided Molecular Design, 2007, 21, 575-590.	1.3	65
133	Structure-Based Pharmacophore Design and Virtual Screening for Novel Angiotensin Converting Enzyme 2 Inhibitors. Journal of Chemical Information and Modeling, 2006, 46, 708-716.	2.5	84
134	Pharmacophore modelling: applications in drug discovery. Expert Opinion on Drug Discovery, 2006, 1, 261-267.	2.5	54
135	Parallel Screening:  A Novel Concept in Pharmacophore Modeling and Virtual Screening. Journal of Chemical Information and Modeling, 2006, 46, 2146-2157.	2.5	123
136	Pharmacophore Modeling and in Silico Screening for New P450 19 (Aromatase) Inhibitorsâ€. Journal of Chemical Information and Modeling, 2006, 46, 1301-1311.	2.5	101
137	Taspine:  Bioactivity-Guided Isolation and Molecular Ligandâ^Target Insight of a Potent Acetylcholinesterase Inhibitor from Magnolia x soulangiana. Journal of Natural Products, 2006, 69, 1341-1346.	1.5	57
138	Comparative Performance Assessment of the Conformational Model Generators Omega and Catalyst:Â A Large-Scale Survey on the Retrieval of Protein-Bound Ligand Conformations. Journal of Chemical Information and Modeling, 2006, 46, 1848-1861.	2.5	159
139	Influence of the Conditions in Pharmacophore Generation, Scoring, and 3D Database Search for Chemical Feature-Based Pharmacophore Models:Â One Application Study of ETA- and ETB-Selective Antagonists. Journal of Chemical Information and Modeling, 2006, 46, 1439-1455.	2.5	4
140	Why is $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 facing the endoplasmic reticulum lumen?. Molecular and Cellular Endocrinology, 2006, 248, 15-23.	1.6	68
141	Further Studies on Imidazo[4,5-b]pyridine AT1Angiotensin II Receptor Antagonists. Effects of the Transformation of the 4-Phenylquinoline Backbone into 4-Phenylisoquinolinone or 1-Phenylindene Scaffolds. Journal of Medicinal Chemistry, 2006, 49, 6451-6464.	2.9	78
142	The Discovery of New $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1 Inhibitors by Common Feature Pharmacophore Modeling and Virtual Screening. Journal of Medicinal Chemistry, 2006, 49, 3454-3466.	2.9	114
143	Integrated in Silico Tools for Exploiting the Natural Products' Bioactivity. Planta Medica, 2006, 72, 671-678.	0.7	32
144	Predicting Drug Metabolism Induction In Silico. Current Topics in Medicinal Chemistry, 2006, 6, 1627-1640.	1.0	23

#	Article	IF	Citations
145	Synthesis, Biological Evaluation and 3D-QSAR of 1,3,5-Trisubstituted-4,5- Dihydro-(1H)-Pyrazole Derivatives as Potent and Highly Selective Monoamine Oxidase A Inhibitors. Current Medicinal Chemistry, 2006, 13, 1411-1428.	1.2	58
146	Strategies for Efficient Lead Structure Discovery from Natural Products. Current Medicinal Chemistry, 2006, 13, 1491-1507.	1.2	89
147	Development and Validation of an In Silico P450 Profiler Based on Pharmacophore Models. Current Drug Discovery Technologies, 2006, 3, 1-48.	0.6	43
148	GBPM: GRID-based pharmacophore model: concept and application studies to protein-protein recognition. Bioinformatics, 2006, 22, 1449-1455.	1.8	102
149	Why Drugs Fail - A Study on Side Effects in New Chemical Entities. Current Pharmaceutical Design, 2005, 11, 3545-3559.	0.9	383
150	Structure–activity relationships and molecular modelling of 5-arylidene-2,4-thiazolidinediones active as aldose reductase inhibitors. Bioorganic and Medicinal Chemistry, 2005, 13, 2809-2823.	1.4	107
151	LigandScout:Â 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. Journal of Chemical Information and Modeling, 2005, 45, 160-169.	2.5	1,576
152	Pharmacophore Identification, in Silico Screening, and Virtual Library Design for Inhibitors of the Human Factor Xa. Journal of Chemical Information and Modeling, 2005, 45, 146-159.	2.5	67
153	Pharmacophore Modeling, Docking, and Principal Component Analysis Based Clustering: Combined Computer-Assisted Approaches To Identify New Inhibitors of the Human Rhinovirus Coat Protein§. Journal of Medicinal Chemistry, 2005, 48, 6250-6260.	2.9	44
154	Pharmacophore Identification, in Silico Screening, and Virtual Library Design for Inhibitors of the Human Factor Xa ChemInform, 2005, 36, no.	0.1	0
155	LigandScout: 3-D Pharmacophores Derived from Protein-Bound Lingands and Their Use as Virtual Screening Filters ChemInform, 2005, 36, no.	0.1	4
156	Comparative Analysis of Protein-Bound Ligand Conformations with Respect to Catalyst′s Conformational Space Subsampling Algorithms ChemInform, 2005, 36, no.	0.1	0
157	The Identification of Ligand Features Essential for PXR Activation by Pharmacophore Modeling ChemInform, 2005, 36, no.	0.1	0
158	Human Rhinovirus 3C Protease: Generation of Pharmacophore Models for Peptidic and Nonpeptidic Inhibitors and Their Application in Virtual Screening ChemInform, 2005, 36, no.	0.1	0
159	Docking Versus Pharmacophore Model Generation: A Comparison of High-Throughput Virtual Screening Strategies for the Search of Human Rhinovirus Coat Protein Inhibitors. QSAR and Combinatorial Science, 2005, 24, 470-479.	1.5	19
160	Recent Advances in Docking and Scoring. Current Computer-Aided Drug Design, 2005, 1, 93-102.	0.8	146
161	Discovering COX-Inhibiting Constituents of Morus Root Bark: Activity-Guided versus Computer-Aided Methods. Planta Medica, 2005, 71, 399-405.	0.7	52
162	Application of the In Combo Screening Approach For the Discovery of Non-Alkaloid Acetylcholinesterase Inhibitors from Cichorium intybus. Current Drug Discovery Technologies, 2005, 2, 185-193.	0.6	24

#	Article	IF	Citations
163	Comparative Analysis of Protein-Bound Ligand Conformations with Respect to Catalyst's Conformational Space Subsampling Algorithms. Journal of Chemical Information and Modeling, 2005, 45, 422-430.	2.5	148
164	Comparative enzymology of $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 from six species. Journal of Molecular Endocrinology, 2005, 35, 89-101.	1.1	71
165	Human Rhinovirus 3C Protease:Â Generation of Pharmacophore Models for Peptidic and Nonpeptidic Inhibitors and Their Application in Virtual Screening. Journal of Chemical Information and Modeling, 2005, 45, 716-724.	2.5	29
166	Synthesis and Pharmacological Evaluation of 1H-Imidazoles as Ligands for the Estrogen Receptor and Cytotoxic Inhibitors of the Cyclooxygenase. Journal of Medicinal Chemistry, 2005, 48, 6516-6521.	2.9	66
167	The Identification of Ligand Features Essential for PXR Activation by Pharmacophore Modeling. Journal of Chemical Information and Modeling, 2005, 45, 431-439.	2.5	85
168	Discovery of High-Affinity Ligands of $\sharp 1$ Receptor, ERG2, and Emopamil Binding Protein by Pharmacophore Modeling and Virtual Screening. Journal of Medicinal Chemistry, 2005, 48, 4754-4764.	2.9	117
169	N-(3,4-Dichlorobenzyl)azolesâ€"Investigations Regarding Synthesis, NMR-Spectroscopy and Affinity Towards Sisma-1 and Sigma-2 Receptors. Scientia Pharmaceutica, 2004, 72, 197-211.	0.7	1
170	In vitro opioid activity profiles of 6-amino acid substituted derivatives of 14-O-methyloxymorphone. European Journal of Pharmacology, 2004, 483, 301-308.	1.7	30
171	Lead Identification for Modulators of Multidrug Resistance based onin silico Screening with a Pharmacophoric Feature Model. Archiv Der Pharmazie, 2004, 337, 317-327.	2.1	61
172	Combining Ethnopharmacology and Virtual Screening for Lead Structure Discovery: COX-Inhibitors as Application Example ChemInform, 2004, 35, no.	0.1	0
173	Influenza Virus Neuraminidase Inhibitors: Generation and Comparison of Structure-Based and Common Feature Pharmacophore Hypotheses and Their Application in Virtual Screening ChemInform, 2004, 35, no.	0.1	0
174	Influenza Virus Neuraminidase Inhibitors:  Generation and Comparison of Structure-Based and Common Feature Pharmacophore Hypotheses and Their Application in Virtual Screening. Journal of Chemical Information and Computer Sciences, 2004, 44, 1849-1856.	2.8	59
175	Chemical Function Based Pharmacophore Generation of Endothelin-A Selective Receptor Antagonists. Journal of Medicinal Chemistry, 2004, 47, 2750-2760.	2.9	38
176	Pharmacophore definition and 3D searches. Drug Discovery Today: Technologies, 2004, 1, 203-207.	4.0	75
177	Combining Ethnopharmacology and Virtual Screening for Lead Structure Discovery:  COX-Inhibitors as Application Example. Journal of Chemical Information and Computer Sciences, 2004, 44, 480-488.	2.8	67
178	Acetylcholinesterase Inhibitory Activity of Scopolin and Scopoletin Discovered by Virtual Screening of Natural Products. Journal of Medicinal Chemistry, 2004, 47, 6248-6254.	2.9	193
179	Impact of Scoring Functions on Enrichment in Docking-Based Virtual Screening:  An Application Study on Renin Inhibitorsâ€. Journal of Chemical Information and Computer Sciences, 2004, 44, 1123-1129.	2.8	60
180	Virtual combinatorial chemistry and in silico screening: Efficient tools for lead structure discovery?. Pure and Applied Chemistry, 2004, 76, 991-996.	0.9	36

#	Article	IF	Citations
181	In silico screening with benzofurane- and benzopyrane-type MDR-modulators. Il Farmaco, 2003, 58, 185-191.	0.9	14
182	In silico Screening with Benzofuran- and Benzopyran-Type MDR-Modulators ChemInform, 2003, 34, no.	0.1	0
183	Non-Peptide Angiotensin II Receptor Antagonists:Â Chemical Feature Based Pharmacophore Identification. Journal of Medicinal Chemistry, 2003, 46, 716-726.	2.9	92
184	Use of 3D Pharmacophore Models in 3D Database Searching., 2003,,.		3
185	Putative Dynamics of Vasopressin in its V1a Receptor Binding Site. Receptors and Channels, 2003, 9, 93-106.	1.1	4
186	Chemical feature-based pharmacophores and virtual library screening for discovery of new leads. Current Opinion in Drug Discovery & Development, 2003, 6, 370-6.	1.9	27
187	Synthesis and Molecular Modeling of New 1-Aryl-3-[4-arylpiperazin-1-yl]-1-propane Derivatives with High Affinity at the Serotonin Transporter and at 5-HT1AReceptors. Journal of Medicinal Chemistry, 2002, 45, 4128-4139.	2.9	47
188	Molekülsonden zur Erforschung von IonenkanÃten: Der Weg von Ionen durch die Zellmembran. Biologie in Unserer Zeit, 2002, 32, 102-109.	0.3	1
189	Mapping and Fitting the Peripheral Benzodiazepine Receptor Binding Site by Carboxamide Derivatives. Comparison of Different Approaches to Quantitative Ligandâ´'Receptor Interaction Modeling. Journal of Medicinal Chemistry, 2001, 44, 1134-1150.	2.9	68
190	Virtual Screening An Effective Tool for Lead Structure Discovery. Current Pharmaceutical Design, 2001, 7, 509-527.	0.9	127
191	A 3D QSAR Study of Monoamino Oxidase-B Inhibitors Using the Chemical Function Based Pharmacophore Generation Approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 2001, 16, 199-215.	0.5	25
192	Potential of Pyrazolooxadiazinone Derivatives as Serine Protease Inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2001, 16, 15-34.	0.5	4
193	Conserved Ca2+-antagonist-binding properties and putative folding structure of a recombinant high-affinity dihydropyridine-binding domain. Biochemical Journal, 2000, 347, 829.	1.7	27
194	Variability in chemical constituents in Petasites hybridus from Austria. Biochemical Systematics and Ecology, 2000, 28, 421-432.	0.6	23
195	Chemical function based pharmacophore models as suitable filters for virtual 3D-database screening. Computational and Theoretical Chemistry, 2000, 503, 59-72.	1.5	8
196	Long chain diamines inhibit growth of C6 glioma cells according to their hydrophobicity. An in vitro and molecular modeling study. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361, 235-246.	1.4	9
197	3D-QSAR STUDY OF NEW ACETYL-COA:CHOLESTEROL O-ACYL TRANSFERASE (ACAT) INHIBITORS. Scientia Pharmaceutica, 2000, 68, 65-73.	0.7	0
198	Chemical Function Based Alignment Generation for 3D QSAR of Highly Flexible Platelet Aggregation Inhibitors., 2000,, 318-320.		0

#	Article	IF	CITATIONS
199	Molecular similarity characterization using CoMFA. Journal of Computer - Aided Molecular Design, 1998, 12/14, 215-231.	1.0	4
200	New Principal Components Derived Parameters Describing Molecular Diversity of Heteroaromatic Residues. QSAR and Combinatorial Science, 1998, 17, 211-223.	1.4	8
201	Acylation of a novel quinoxalinyl substituted pyrazole derivative. synthesis, quantum chemistry calculations, and x-ray structure analysis. Journal of Heterocyclic Chemistry, 1998, 35, 113-115.	1.4	5
202	Building a model of interaction at the NK-2 receptors: Polycondensed heterocycles containing the pyrimidoindole skeleton. European Journal of Medicinal Chemistry, 1998, 32, 973-985.	2.6	16
203	On the Use of Chemical Function-Based Alignments as Input for 3D-QSAR. Journal of Chemical Information and Computer Sciences, 1998, 38, 325-330.	2.8	22
204	Novel Potent and Selective Central 5-HT3Receptor Ligands Provided with Different Intrinsic Efficacy. 1. Mapping the Central 5-HT3Receptor Binding Site by Arylpiperazine Derivatives. Journal of Medicinal Chemistry, 1998, 41, 728-741.	2.9	73
205	External Action of Di- and Polyamines on Maxi Calcium-Activated Potassium Channels: An Electrophysiological and Molecular Modeling Study. Biophysical Journal, 1998, 74, 722-730.	0.2	36
206	Molecular Similarity Characterization Using CoMFA., 1998,, 215-231.		0
207	Azinyl and Diazinyl Hydrazones Derived from ArylN-Heteroaryl Ketones:Â Synthesis and Antiproliferative Activityâ€,‡. Journal of Medicinal Chemistry, 1997, 40, 4420-4425.	2.9	44
208	Thiazolyl and benzothiazolyl hydrazones derived from \hat{l}_{\pm} -(N)-acetylpyridines and diazines: synthesis, antiproliferative activity and CoMFA studies. European Journal of Medicinal Chemistry, 1997, 32, 397-408.	2.6	43
209	Novel diazinyl 3â€pyridyl ketones: Efficient synthesis and complete assignment of ¹ H and ¹³ C NMR spectra. Journal of Heterocyclic Chemistry, 1997, 34, 17-19.	1.4	4
210	On the Bioisosteric Potential of Diazines: Diazine Analogues of the Combined Thromboxane A2Receptor Antagonist and Synthetase Inhibitor Ridogrelâ€. Journal of Medicinal Chemistry, 1996, 39, 4058-4064.	2.9	15
211	Molecular Basis of Peripheral vs Central Benzodiazepine Receptor Selectivity in a New Class of Peripheral Benzodiazepine Receptor Ligands Related to Alpidem. Journal of Medicinal Chemistry, 1996, 39, 4275-4284.	2.9	92
212	Alkylation of nonâ€electron rich nitrogen heterocycles by alkyl orthoformates: Quantum chemistry calculations. Journal of Heterocyclic Chemistry, 1996, 33, 1413-1415.	1.4	3
213	Pyridazines LXXVIII On the reactivity of 4â€methoxyâ€[(4â€pyridazinyl)methylidene]aniline in ester enolateâ€imine condensation reactions. Journal of Heterocyclic Chemistry, 1996, 33, 1731-1735.	1.4	5
214	Molecular structure and dynamics of some potent 5-HT 3 receptor antagonists. Insight into the interaction with the receptor. Bioorganic and Medicinal Chemistry, 1996, 4, 1255-1269.	1.4	20
215	Molecular Similarity Determination of Heteroaromatic Ring Fragments Using GRID and Multivariate Data Analysis. QSAR and Combinatorial Science, 1996, 15, 469-474.	1.4	3
216	Aryl Diazinyl Ketoximes: Synthesis and Configurational Assignment. Heterocycles, 1996, 43, 151.	0.4	13

#	Article	IF	CITATIONS
217	A Competitive Enzyme Immunoassay for the Pyrrolizidine Alkaloids of the Senecionine Type*. Planta Medica, 1996, 62, 267-271.	0.7	35
218	Synthetic Building Blocks Containing the 1,2-Diazine Moiety: N- and O-Protected 3-(4-Pyridazinyl)isoserines. Heterocycles, 1996, 43, 1057.	0.4	7
219	Computer-Aided Molecular Modeling, Synthesis, and Biological Evaluation of 8-(Benzyloxy)-2-phenylpyrazolo[4,3-c]quinoline as a Novel Benzodiazepine Receptor Agonist Ligand. Journal of Medicinal Chemistry, 1995, 38, 950-957.	2.9	20
220	Novel, Potent, and Selective 5-HT3 Receptor Antagonists Based on the Arylpiperazine Skeleton: Synthesis, Structure, Biological Activity, and Comparative Molecular Field Analysis Studies. Journal of Medicinal Chemistry, 1995, 38, 2692-2704.	2.9	86
221	Molecular Similarity Determination of Heteroaromatics Using CoMFA and Multivariate Data Analysis. QSAR and Combinatorial Science, 1994, 13, 402-405.	1.4	1
222	Efficient Large-Scale Preparation of Phenyl 3-Pyridazinyl Ketone 1. Synthetic Communications, 1994, 24, 773-778.	1.1	9
223	Inhibitors of prolyl endopeptidase: Characterization of the pharmacophoric pattern using conformational analysis and 3D-QSAR. Journal of Computer-Aided Molecular Design, 1993, 7, 253-262.	1.3	6
224	Pyridazines. LXVIII . Convenient Synthesis of Phenyl (6â€Substituted 3â€Pyridazinyl) Ketones <i>via</i> the Oxidative Decyanation Route. Journal of Heterocyclic Chemistry, 1993, 30, 1685-1689.	1.4	12
225	Consecutive and Selective Double Methylene Insertion of Lithium Carbenoids to Isothiocyanates: A Direct Assembly of Fourâ€membered Sulfurâ€Containing Cycles. Angewandte Chemie, 0, , .	1.6	0