
Graeme A Snook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/490525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Preferential Cation Doping on the Surface of LiFePO ₄ Particles and Its Effect on Properties. ACS Applied Energy Materials, 2020, 3, 9158-9167.	5.1	28
2	Effects of Nanoscale Surface Lithium Depletion on the Optical Properties and Electronic Band Structures of Lithium Transition-Metal Phosphates. Journal of Physical Chemistry C, 2020, 124, 19969-19979.	3.1	5
3	Spectroscopic Evidence of Surface Li-Depletion of Lithium Transition-Metal Phosphates. ACS Applied Energy Materials, 2020, 3, 2856-2866.	5.1	12
4	Nanoscale characteristics of practical LiFePO4 materials - Effects on electrical, magnetic and electrochemical properties. Materials Characterization, 2020, 162, 110171.	4.4	12
5	Diffusion Measurements of CO2 Within Carbon Anodes for Aluminium Smelting. Minerals, Metals and Materials Series, 2020, , 1183-1188.	0.4	0
6	Re-evaluation of experimental measurements for the validation of electronic band structure calculations for LiFePO ₄ and FePO ₄ . RSC Advances, 2019, 9, 1134-1146.	3.6	33
7	Diffusion and Flow of CO2 in Carbon Anode for Aluminium Smelting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 846-856.	2.1	1
8	Improving the Rate Capability of LiFePO ₄ Electrode by Controlling Particle Size Distribution. Journal of the Electrochemical Society, 2019, 166, A4128-A4135.	2.9	11
9	Understanding the Anode Porosity as a Means for Improved Aluminium Smelting. Minerals, Metals and Materials Series, 2018, , 1235-1242.	0.4	4
10	Anode characterisation and gas diffusion behaviour in aluminium smelting. AIP Conference Proceedings, 2017, , .	0.4	3
11	Electropolymerisation of N-Ethylanilinium Trifluoroacetate Ionic Liquid into Poly(N-Ethylaniline) and Control of its Morphology. Australian Journal of Chemistry, 2017, 70, 985.	0.9	1
12	Fabrication and performance of electrochemically grafted thiophene silicon nanoparticle anodes for Li-ion batteries. Journal of Power Sources, 2016, 324, 97-105.	7.8	6
13	Development of a niobium-doped titania inert anode for titanium electrowinning in molten chloride salts. Faraday Discussions, 2016, 190, 35-52.	3.2	13
14	Electrochemical Tailoring of Fibrous Polyaniline and Electroless Decoration with Gold and Platinum Nanoparticles. Langmuir, 2016, 32, 8834-8842.	3.5	10
15	Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Advances, 2015, 5, 11611-11626.	3.6	192
16	High-throughput approach for the identification of anilinium-based ionic liquids that are suitable for electropolymerisation. Physical Chemistry Chemical Physics, 2015, 17, 17967-17972.	2.8	17
17	Electropolymerisation of Catalytically Active PEDOT from an Ionic Liquid on a Flexible Carbon Cloth Using a Sandwich Cell Configuration. ChemPlusChem, 2015, 80, 74-82.	2.8	19
18	In situ freezing point determination of cryolite baths utilising resistometer measurements. Journal of Solid State Electrochemistry, 2014, 18, 3339-3344.	2.5	1

GRAEME A SNOOK

#	Article	IF	CITATIONS
19	Reference Electrodes for Ionic Liquids and Molten Salts. , 2013, , 189-227.		5
20	Rapid SECM probing of dissolution of LiCoO2 battery materials in an ionic liquid. Journal of Electroanalytical Chemistry, 2012, 687, 30-34.	3.8	29
21	Role of H+ in Polypyrrole and Poly(3,4-ethylenedioxythiophene) Formation Using FeCl3·6H2O in the Room Temperature Ionic Liquid, C4mpyrTFSI. Australian Journal of Chemistry, 2012, 65, 1513.	0.9	16
22	A furnace and environmental cell for the <i>in situ</i> investigation of molten salt electrolysis using high-energy X-ray diffraction. Journal of Synchrotron Radiation, 2012, 19, 39-47.	2.4	8
23	Quantification of passivation layer growth in inert anodes for molten salt electrochemistry by <i>in situ</i> energy-dispersive diffraction. Journal of Applied Crystallography, 2012, 45, 28-37.	4.5	10
24	A comparative study of the electrodeposition of polyaniline from a protic ionic liquid, an aprotic ionic liquid and neutral aqueous solution using anilinium nitrate. Journal of Materials Chemistry, 2011, 21, 7622.	6.7	38
25	Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 2011, 196, 1-12.	7.8	3,182
26	Application of Current-Pulse Techniques to Analysis of Anode Gas Film Behavior in a Hall-Heroult Cell. ECS Transactions, 2010, 28, 349-360.	0.5	4
27	Current pulse measurement of capacitance during molten salt electrochemical experiments. Journal of Solid State Electrochemistry, 2009, 13, 591-598.	2.5	7
28	Mathematical functions for optimisation of conducting polymer/activated carbon asymmetric supercapacitors. Journal of Power Sources, 2009, 186, 216-223.	7.8	43
29	Fast Fourier Transform Current Pulse method for dynamic measurements of cell ohmic resistance during electrolysis. Electrochimica Acta, 2009, 54, 4925-4932.	5.2	8
30	Co-deposition of conducting polymers in a room temperature ionic liquid. Journal of Materials Chemistry, 2009, 19, 4248.	6.7	36
31	The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance. Journal of Electroanalytical Chemistry, 2008, 612, 140-146.	3.8	94
32	Current pulse method for in situ measurement of electrochemical capacitance. Journal of Electroanalytical Chemistry, 2008, 622, 225-232.	3.8	7
33	Detection of Oxygen Evolution from Nickel Hydroxide Electrodes Using Scanning Electrochemical Microscopy. Journal of the Electrochemical Society, 2008, 155, A262.	2.9	28
34	Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films. Electrochemistry Communications, 2007, 9, 83-88.	4.7	152
35	Evaluation of the effects of oxygen evolution on the capacity and cycle life of nickel hydroxide electrode materials. Journal of Power Sources, 2007, 168, 513-521.	7.8	49
36	Carbon nanotube stabilised emulsions for electrochemical synthesis of porous nanocomposite coatings of poly[3,4-ethylene-dioxythiophene]. Chemical Communications, 2006, , 4629.	4.1	86

GRAEME A SNOOK

#	Article	IF	CITATIONS
37	Evaluation of a Agâ^£Ag+ reference electrode for use in room temperature ionic liquids. Electrochemistry Communications, 2006, 8, 1405-1411.	4.7	132
38	Increasing Cycle Life of Nickel Hydroxide Electrodes at High Currents. ECS Transactions, 2006, 2, 105-116.	0.5	4
39	Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Journal of Materials Chemistry, 2005, 15, 2297.	6.7	167
40	Redox deposition of manganese oxide on graphite for supercapacitors. Electrochemistry Communications, 2004, 6, 499-504.	4.7	193
41	Studies of deposition of and charge storage in polypyrrole–chloride and polypyrrole–carbon nanotube composites with an electrochemical quartz crystal microbalance. Journal of Electroanalytical Chemistry, 2004, 568, 135-142.	3.8	76
42	The catalysis of solid state intercalation processes by organic solvents. Journal of Electroanalytical Chemistry, 2003, 554-555, 157-165.	3.8	10
43	Charge Transport Dynamics and Redox Induced Structural Changes within Solid Deposits of a Ruthenium Dimer. Langmuir, 2002, 18, 9874-9881.	3.5	4
44	The use of massograms and voltammograms for distinguishing five basic combinations of charge transfer and mass transfer at electrode surfaces. Journal of Electroanalytical Chemistry, 2002, 526, 1-9.	3.8	41
45	Use of the Ferrocene Oxidation Process To Provide Both Reference Electrode Potential Calibration and a Simple Measurement (via Semiintegration) of the Uncompensated Resistance in Cyclic Voltammetric Studies in High-Resistance Organic Solvents. Analytical Chemistry, 2000, 72, 3492-3496.	6.5	94
46	Voltammetric Oxidation of Solution and Solid Phases of Salts of [V(CO)6]-in Aqueous (Electrolyte) Media. Journal of Physical Chemistry B, 1998, 102, 1229-1234.	2.6	12
47	Systematic Studies of 17-Electron Rhenium(II) Carbonyl Phosphine Complexes. Organometallics, 1998, 17, 2977-2985.	2.3	29