Martin Steinhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4905160/publications.pdf

Version: 2024-02-01

200 papers

10,902 citations

50 h-index

38742

99 g-index

215 all docs

215 docs citations

215 times ranked 10786 citing authors

#	Article	IF	Citations
1	Nanostructured Fibers via Electrospinning. Advanced Materials, 2001, 13, 70-72.	21.0	1,123
2	Polymer Nanotubes by Wetting of Ordered Porous Templates. Science, 2002, 296, 1997-1997.	12.6	818
3	Nanotubes by Template Wetting: A Modular Assembly System. Angewandte Chemie - International Edition, 2004, 43, 1334-1344.	13.8	409
4	Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nature Nanotechnology, 2008, 3, 234-239.	31.5	396
5	Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends. Polymer Engineering and Science, 2001, 41, 982-989.	3.1	311
6	Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Applied Physics Letters, 2003, 83, 440-442.	3.3	290
7	Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polymers for Advanced Technologies, 2005, 16, 276-282.	3.2	269
8	Self-Ordered Anodic Aluminum Oxide Formed by H ₂ SO ₄ Hard Anodization. ACS Nano, 2008, 2, 302-310.	14.6	222
9	Coherent Kinetic Control over Crystal Orientation in Macroscopic Ensembles of Polymer Nanorods and Nanotubes. Physical Review Letters, 2006, 97, 027801.	7.8	197
10	Curvature-Directed Crystallization of Poly(vinylidene difluoride) in Nanotube Walls. Macromolecules, 2003, 36, 3646-3651.	4.8	185
11	Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics. Energy and Environmental Science, 2015, 8, 2685-2697.	30.8	180
12	From Heterogeneous to Homogeneous Nucleation of Isotactic Poly(propylene) Confined to Nanoporous Alumina. Nano Letters, 2011, 11, 1671-1675.	9.1	179
13	Manipulating the Crystalline State of Pharmaceuticals by Nanoconfinement. Nano Letters, 2007, 7, 1381-1385.	9.1	156
14	Palladium Nanotubes with Tailored Wall Morphologies. Advanced Materials, 2003, 15, 706-709.	21.0	155
15	Diameter-Dependence of the Morphology of PS-b-PMMA Nanorods Confined Within Ordered Porous Alumina Templates. Macromolecular Rapid Communications, 2005, 26, 369-375.	3.9	153
16	Surface Oxidation of Stainless Steel: Oxygen Evolution Electrocatalysts with High Catalytic Activity. ACS Catalysis, 2015, 5, 2671-2680.	11.2	153
17	Nanostructured Gold Films for SERS by Block Copolymer-Templated Galvanic Displacement Reactions. Nano Letters, 2009, 9, 2384-2389.	9.1	133
18	Stabilization of the amorphous state of pharmaceuticals in nanopores. Journal of Materials Chemistry, 2008, 18, 2537.	6.7	125

#	Article	IF	Citations
19	Liquid Crystalline Nanowires in Porous Alumina:Â Geometric Confinement versus Influence of Pore Walls. Nano Letters, 2005, 5, 429-434.	9.1	122
20	Nanoporous Metal Membranes with Bicontinuous Morphology from Recyclable Blockâ€Copolymer Templates. Advanced Materials, 2010, 22, 2068-2072.	21.0	118
21	Ordered Arrays of ã€^100〉-Oriented Silicon Nanorods by CMOS-Compatible Block Copolymer Lithography. Nano Letters, 2007, 7, 1516-1520.	9.1	116
22	Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog. ACS Nano, 2017, 11, 9711-9719.	14.6	111
23	Graded-Bandgap Quantum- Dot-Modified Nanotubes: A Sensitive Biosensor for Enhanced Detection of DNA Hybridization. Advanced Materials, 2007, 19, 1933-1936.	21.0	109
24	Multiple nucleation events and local dynamics of poly($\hat{l}\mu$ -caprolactone) (PCL) confined to nanoporous alumina. Soft Matter, 2013, 9, 9189.	2.7	107
25	Homogeneous crystallization and local dynamics of poly(ethylene oxide) (PEO) confined to nanoporous alumina. Soft Matter, 2013, 9, 2621.	2.7	107
26	Porous Silicon and Alumina as Chemically Reactive Templates for the Synthesis of Tubes and Wires of SnSe, Sn, and SnO2. Angewandte Chemie - International Edition, 2006, 45, 311-315.	13.8	106
27	Nanotubes à la Carte: Wetting of Porous Templates. ChemPhysChem, 2003, 4, 1171-1176.	2.1	105
28	Formation of Dendrimer Nanotubes by Layer-by-Layer Deposition. Small, 2004, 1, 99-102.	10.0	96
29	Nanoscopic Morphologies in Block Copolymer Nanorods as Templates for Atomicâ€Layer Deposition of Semiconductors. Advanced Materials, 2009, 21, 2763-2766.	21.0	93
30	Suppression of Phase Transitions in a Confined Rodlike Liquid Crystal. ACS Nano, 2011, 5, 9208-9215.	14.6	92
31	Pt Nanoshell Tubes by Template Wetting. Nano Letters, 2004, 4, 143-147.	9.1	90
32	Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. Macromolecules, 2016, 49, 7400-7414.	4.8	90
33	Electroâ€Oxidation of Ni42 Steel: A Highly Active Bifunctional Electrocatalyst. Advanced Functional Materials, 2016, 26, 6402-6417.	14.9	90
34	Direct Synthesis of Mesoporous Carbon Microwires and Nanowires. Chemistry of Materials, 2007, 19, 2383-2385.	6.7	87
35	X20CoCrWMo10-9 /Co ₃ O ₄ : a metal–ceramic composite with unique efficiency values for water-splitting in the neutral regime. Energy and Environmental Science, 2016, 9, 2609-2622.	30.8	84
36	Tree-like alumina nanopores generated in a non-steady-state anodization. Journal of Materials Chemistry, 2007, 17, 3493.	6.7	82

#	Article	IF	CITATIONS
37	Functional Quantumâ€Dot/Dendrimer Nanotubes for Sensitive Detection of DNA Hybridization. Small, 2008, 4, 566-571.	10.0	80
38	Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads. Nature Communications, 2015, 6, 6621.	12.8	80
39	Nondestructive Replication of Self-Ordered Nanoporous Alumina Membranes via Cross-Linked Polyacrylate Nanofiber Arrays. Nano Letters, 2008, 8, 1954-1959.	9.1	74
40	Mesoporous Block Copolymer Nanorods by Swelling-Induced Morphology Reconstruction. Nano Letters, 2008, 8, 3548-3553.	9.1	67
41	Reversible Adhesion Switching of Porous Fibrillar Adhesive Pads by Humidity. Nano Letters, 2013, 13, 5541-5548.	9.1	67
42	Quantitative Analysis of the Grain Morphology in Self-Assembled Hexagonal Lattices. ACS Nano, 2008, 2, 913-920.	14.6	65
43	Size-dependent growth of polymorphs in nanopores and Ostwald's step rule of stages. Physical Chemistry Chemical Physics, 2011, 13, 21367.	2.8	64
44	Suppression of Poly(ethylene oxide) Crystallization in Diblock Copolymers of Poly(ethylene) Tj ETQq0 0 0 rgBT /C	Overlock 1 4.8	0 Tf 50 467 T 63
45	Dynamics of Unentangled <i>cis</i> -1,4-Polyisoprene Confined to Nanoporous Alumina. Macromolecules, 2014, 47, 3895-3900.	4.8	63
46	Homogeneous Nucleation of Predominantly Cubic Ice Confined in Nanoporous Alumina. Nano Letters, 2015, 15, 1987-1992.	9.1	60
47	Confinement Effects on Chain Dynamics and Local Chain Order in Entangled Polymer Melts. Macromolecules, 2010, 43, 4429-4434.	4.8	58
48	Gold/Carbon Composite Tubes and Gold Nanowires by Impregnating Templates with Hydrogen Tetrachloroaurate/Acetone Solutions. Nano Letters, 2004, 4, 1121-1125.	9.1	56
49	Lithium Niobate Microtubes within Ordered Macroporous Silicon by Templated Thermolysis of a Single Source Precursor. Chemistry of Materials, 2005, 17, 3-5.	6.7	56
50	Swelling-Induced Morphology Reconstruction in Block Copolymer Nanorods: Kinetics and Impact of Surface Tension During Solvent Evaporation. ACS Nano, 2011, 5, 1928-1938.	14.6	52
51	Arrays of Aligned Supramolecular Wires by Macroscopic Orientation of Columnar Discotic Mesophases. ACS Nano, 2012, 6, 9359-9365.	14.6	50
52	Oxidized Mild Steel S235: An Efficient Anode for Electrocatalytically Initiated Water Splitting. ChemSusChem, 2015, 8, 3099-3110.	6.8	50
53	Nanopatterned Carbon Films with Engineered Morphology by Direct Carbonization of UV-Stabilized Block Copolymer Films. Nano Letters, 2008, 8, 3993-3997.	9.1	49
54	Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing. Nano Letters, 2010, 10, 2173-2177.	9.1	48

#	Article	IF	CITATIONS
55	One step route to the fabrication of arrays of TiO ₂ nanobowls via a complementary block copolymer templating and sol–gel process. Soft Matter, 2008, 4, 515-521.	2.7	46
56	Poly(γ-benzyl- <scp>l</scp> -glutamate) Peptides Confined to Nanoporous Alumina: Pore Diameter Dependence of Self-Assembly and Segmental Dynamics. Macromolecules, 2009, 42, 2881-2885.	4.8	46
57	Adsorption Hysteresis in Self-Ordered Nanoporous Alumina. Langmuir, 2008, 24, 10936-10941.	3.5	44
58	Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates. Green Chemistry, 2011, 13, 3397.	9.0	44
59	Organic Tube/Rod Hybrid Nanofibers with Adjustable Segment Lengths by Bidirectional Template Wetting. Advanced Functional Materials, 2007, 17, 1327-1332.	14.9	43
60	Ferroelectric Lead Zirconate Titanate and Barium Titanate Nanotubes. Integrated Ferroelectrics, 2003, 59, 1513-1520.	0.7	42
61	Tailoring Normal Adhesion of Arrays of Thermoplastic, Spring-like Polymer Nanorods by Shaping Nanorod Tips. Langmuir, 2012, 28, 10781-10788.	3 . 5	42
62	Mesoporous Polymer Nanofibers by Infiltration of Block Copolymers with Sacrificial Domains into Porous Alumina. Chemistry of Materials, 2008, 20, 379-381.	6.7	41
63	Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking. Journal of Optics (United Kingdom), 2011, 13, 044023.	2.2	40
64	Cellular interactions of biodegradable nanorod arrays prepared by nondestructive extraction from nanoporous alumina. Journal of Materials Chemistry, 2010, 20, 3171.	6.7	38
65	Polymer Dynamics of Polybutadiene in Nanoscopic Confinement As Revealed by Field Cycling ¹ H NMR. Macromolecules, 2011, 44, 4017-4021.	4.8	38
66	Porous block copolymer separation membranes for 21st century sanitation and hygiene. Chemical Society Reviews, 2021, 50, 6333-6348.	38.1	38
67	Morphology of Polymer/Liquid-Crystal Nanotubes: Influence of Confinement. Advanced Functional Materials, 2005, 15, 1656-1664.	14.9	37
68	Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. Journal of Chemical Physics, 2017, 146, 203320.	3.0	37
69	Supramolecular Organization of Polymeric Materials in Nanoporous Hard Templates., 2008,, 123-187.		36
70	Electrochemical synthesis of coaxial TiO ₂ â \in "Ag nanowires and their application in photocatalytic water splitting. Journal of Materials Chemistry A, 2014, 2, 2648-2656.	10.3	36
71	Large-scale template-assisted growth of LiNbO3 one-dimensional nanostructures for nano-sensors. Sensors and Actuators B: Chemical, 2005, 109, 86-90.	7.8	35
72	Calibration of optically trapped nanotools. Nanotechnology, 2010, 21, 175501.	2.6	35

#	Article	IF	Citations
73	Tuning and Switching the Hypersonic Phononic Properties of Elastic Impedance Contrast Nanocomposites. ACS Nano, 2010, 4, 3471-3481.	14.6	35
74	Formation, morphology and internal structure of one-dimensional nanostructures of the ferroelectric polymer P(VDF-TrFE). Polymer, 2013, 54, 2737-2744.	3.8	35
75	Large-Scale Diffusion of Entangled Polymers along Nanochannels. ACS Macro Letters, 2015, 4, 561-565.	4.8	35
76	Steel-based electrocatalysts for efficient and durable oxygen evolution in acidic media. Catalysis Science and Technology, 2018, 8, 2104-2116.	4.1	35
77	High-temperature resistant, ordered gold nanoparticle arrays. Nanotechnology, 2006, 17, 2122-2126.	2.6	34
78	Confined Diffusion in Ordered Nanoporous Alumina Membranes. Small, 2007, 3, 380-385.	10.0	34
79	What Happens to Polymer Chains Confined in Rigid Cylindrical Inorganic (AAO) Nanopores. Macromolecules, 2013, 46, 4932-4936.	4.8	34
80	Lead titanate nano- and microtubes. Journal of Materials Research, 2006, 21, 685-690.	2.6	33
81	Dynamics of Entangled cis-1,4-Polyisoprene Confined to Nanoporous Alumina. Macromolecules, 2019, 52, 4185-4195.	4.8	33
82	Single-Crystalline CdSe Nanostructures:  from Primary Grains to Oriented Nanowires. Chemistry of Materials, 2006, 18, 6094-6096.	6.7	32
83	Chain Dynamics and Segmental Orientation in Polymer Melts Confined to Nanochannels. Macromolecules, 2016, 49, 244-256.	4.8	30
84	Ordered Arrays of Mesoporous Microrods from Recyclable Macroporous Silicon Templates. Advanced Materials, 2006, 18, 2153-2156.	21.0	28
85	Effects of polydispersity, additives, impurities and surfaces on the crystallization of poly(ethylene) Tj ETQq1 1 0.2	784314 rg 3.8	BT/Overlock
86	Fabrication of Au/Titania Composite Nanodot Arrays from Au-Loaded Block Copolymer Micellar Films. Macromolecular Rapid Communications, 2005, 26, 1173-1178.	3.9	27
87	"Four Birds with One Stone― Synthesis of Nanostructures of ZnTe, Te, ZnAl2O4, and Te/ZnAl2O4 from a Single-Source Precursor. Angewandte Chemie - International Edition, 2006, 45, 8042-8045.	13.8	27
88	Crystallization of Amorphous SiO ₂ Microtubes Catalyzed by Lithium. Advanced Functional Materials, 2007, 17, 1952-1957.	14.9	27
89	Nondestructive Mechanical Release of Ordered Polymer Microfiber Arrays from Porous Templates. Small, 2007, 3, 993-1000.	10.0	27
90	Morphology of Porous Hosts Directs Preferred Polymorph Formation and Influences Kinetics of Solid/Solid Transitions of Confined Pharmaceuticals. Crystal Growth and Design, 2014, 14, 78-86.	3.0	27

#	Article	IF	Citations
91	Filtration-Based Synthesis of Micelle-Derived Composite Membranes for High-Flux Ultrafiltration. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6974-6981.	8.0	27
92	Dynamics of Ice/Water Confined in Nanoporous Alumina. Journal of Physical Chemistry B, 2015, 119, 14814-14820.	2.6	27
93	Advanced SERS Sensor Based on Capillarity-Assisted Preconcentration through Gold Nanoparticle-Decorated Porous Nanorods. Small, 2017, 13, 1603947.	10.0	27
94	Formation of Titania/Silica Hybrid Nanowires Containing Linear Mesocage Arrays by Evaporationâ€Induced Blockâ€Copolymer Selfâ€Assembly and Atomic Layer Deposition. Angewandte Chemie - International Edition, 2007, 46, 6829-6832.	13.8	26
95	Measuring of the hardly measurable: adhesion properties of anti-adhesive surfaces. Applied Physics A: Materials Science and Processing, 2013, 111, 183-189.	2.3	26
96	Effect of Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina. Macromolecules, 2016, 49, 5945-5954.	4.8	26
97	Polycyanurate Thermoset Networks with High Thermal, Mechanical, and Hydrolytic Stability Based on Liquid Multifunctional Cyanate Ester Monomers with Bisphenol A and AF Units. Macromolecular Chemistry and Physics, 2008, 209, 1673-1685.	2.2	25
98	8OCB and 8CB Liquid Crystals Confined in Nanoporous Alumina: Effect of Confinement on the Structure and Dynamics. Journal of Physical Chemistry B, 2017, 121, 7382-7394.	2.6	25
99	Quantum dot emitters in two-dimensional photonic crystals of macroporous silicon. Applied Physics Letters, 2005, 87, 142107.	3.3	24
100	Honeycombs in Honeycombs: Complex Liquid Crystal Alumina Composite Mesostructures. ACS Nano, 2014, 8, 4500-4509.	14.6	24
101	Freeâ€Sustaining Threeâ€Dimensional S235 Steelâ€Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution. ChemSusChem, 2018, 11, 3661-3671.	6.8	24
102	From Bad Electrochemical Practices to an Environmental and Waste Reducing Approach for the Generation of Active Hydrogen Evolving Electrodes. Angewandte Chemie - International Edition, 2019, 58, 17383-17392.	13.8	24
103	The fabrication of graphitic thin films with highly dispersed noble metal nanoparticles by direct carbonization of block copolymer inverse micelle templates. Carbon, 2011, 49, 2120-2126.	10.3	23
104	Electro-oxidation of a cobalt based steel in LiOH: a non-noble metal based electro-catalyst suitable for durable water-splitting in an acidic milieu. Nanoscale, 2017, 9, 17829-17838.	5.6	23
105	Aligned Horizontal Silica Nanochannels by Oxidative Self-Sealing of Patterned Silicon Wafers. Chemistry of Materials, 2007, 19, 3-5.	6.7	22
106	Zirconiaâ€based Aerogels via Hydrolysis of Salts and Alkoxides: The Influence of the Synthesis Procedures on the Properties of the Aerogels. Chemistry - an Asian Journal, 2013, 8, 2211-2219.	3.3	22
107	Kinetics of Ice Nucleation Confined in Nanoporous Alumina. Journal of Physical Chemistry B, 2015, 119, 11960-11966.	2.6	22
108	A ferroelectric liquid crystal confined in cylindrical nanopores: reversible smectic layer buckling, enhanced light rotation and extremely fast electro-optically active Goldstone excitations. Nanoscale, 2017, 9, 19086-19099.	5.6	22

7

#	Article	IF	Citations
109	Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. Nanoscale, 2018, 10, 8413-8421.	5.6	22
110	Transfer of Sub-30-nm Patterns from Templates Based on Supramolecular Assemblies. Macromolecules, 2007, 40, 7752-7754.	4.8	21
111	Three-Dimensional to Two-Dimensional Crossover in the Hydrodynamic Interactions between Micron-Scale Rods. Physical Review Letters, 2011, 107, 044501.	7.8	21
112	How Gold Nanoparticles Influence Crystallization of Polyethylene in Rigid Cylindrical Nanopores. Macromolecules, 2013, 46, 403-412.	4.8	21
113	Nanostructuring Polymeric Materials by Templating Strategies. Small, 2011, 7, 1384-1391.	10.0	20
114	Eutectic liquid crystal mixture E7 in nanoporous alumina. Effects of confinement on the thermal and concentration fluctuations. RSC Advances, 2019, 9, 37846-37857.	3.6	20
115	Humidity-Modulated Core–Shell Nanopillars for Enhancement of Gecko-Inspired Adhesion. ACS Applied Nano Materials, 2020, 3, 3596-3603.	5.0	20
116	Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates. Bulletin of the Korean Chemical Society, 2007, 28, 1015-1020.	1.9	19
117	Ordered Topographically Patterned Silicon by Insect-Inspired Capillary Submicron Stamping. ACS Applied Materials & Description (1988).	8.0	18
118	Anisotropic propagation and confinement of high frequency phonons in nanocomposites. Journal of Chemical Physics, 2009, 130, 111102.	3.0	17
119	Block Copolymer Nanotubes by Meltâ€infiltration of Nanoporous Aluminum Oxide. Advanced Materials, 2011, 23, 781-786.	21.0	17
120	Intercalation of Li ⁺ into a Co-Containing Steel-Ceramic Composite: Substantial Oxygen Evolution at Almost Zero Overpotential. ACS Catalysis, 2018, 8, 10914-10925.	11,2	17
121	Functionalization of porous siliceous materials, Part 2: Surface characterization by inverse gas chromatography. Journal of Chromatography A, 2019, 1603, 297-310.	3.7	17
122	Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin. Scientific Reports, 2015, 5, 17478.	3.3	16
123	Capillary Imbibition, Crystallization, and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina. Macromolecules, 2017, 50, 8755-8764.	4.8	16
124	<i>In Situ</i> Monitoring of the Imbibition of Poly(<i>n</i> -butyl methacrylates) in Nanoporous Alumina by Dielectric Spectroscopy. Macromolecules, 2019, 52, 8167-8176.	4.8	16
125	Integration of Erbium-Doped Lithium Niobate Microtubes into Ordered Macroporous Silicon. Advanced Materials, 2006, 18, 363-366.	21.0	15
126	Ultrafine Sanding Paper: A Simple Tool for Creating Small Particles. Small, 2015, 11, 931-935.	10.0	15

#	Article	IF	Citations
127	Pharmaceutical nanocrystals confined in porous host systems – interfacial effects and amorphous interphases. Chemical Communications, 2016, 52, 4466-4469.	4.1	15
128	Capillary Nanostamping with Spongy Mesoporous Silica Stamps. Advanced Functional Materials, 2018, 28, 1800700.	14.9	15
129	In situ growth of luminescent MOF thin films of Sr/Eu(ii)-imidazolate on functionalized nanostructured alumina. CrystEngComm, 2013, 15, 9382.	2.6	14
130	Nanostructured Metal/Carbon Hybrids for Electrocatalysis by Direct Carbonization of Inverse Micelle Multilayers. ACS Nano, 2013, 7, 1573-1582.	14.6	14
131	Evaluation of 3D gold nanodendrite layers obtained by templated galvanic displacement reactions for SERS sensing and heterogeneous catalysis. Nanoscale, 2018, 10, 20671-20680.	5.6	14
132	Silanization of siliceous materials, part 3: Modification of surface energy and acid-base properties of silica nanoparticles determined by inverse gas chromatography (IGC). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126472.	4.7	14
133	Polymer Tubes with Longitudinal Composition Gradient by Face-to-Face Wetting. Chemistry of Materials, 2008, 20, 1076-1081.	6.7	13
134	Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study. Journal of Chemical Physics, 2017, 146, 203306.	3.0	13
135	Semicrystalline Block Copolymers in Rigid Confining Nanopores. Macromolecules, 2017, 50, 8637-8646.	4.8	13
136	Scannerâ€Based Capillary Stamping. Advanced Functional Materials, 2020, 30, 2001531.	14.9	13
137	Nanoscaled Discotic Liquid Crystal/Polymer Systems: Confinement Effects on Morphology and Thermodynamics. Molecular Crystals and Liquid Crystals, 2008, 495, 285/[637]-293/[645].	0.9	12
138	Carbon/metal nanotubes with tailored order and configuration by direct carbonization of inverse block copolymer micelles inside nanoporous alumina. Chemical Communications, 2012, 48, 507-509.	4.1	12
139	Organic melt, electride, and CVD induced in situ deposition of luminescent lanthanide imidazolate MOFs on nanostructured alumina. Inorganic Chemistry Frontiers, 2015, 2, 237-245.	6.0	11
140	Close-packed silane nanodot arrays by capillary nanostamping coupled with heterocyclic silane ring opening. RSC Advances, 2019, 9, 24742-24750.	3.6	11
141	Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition. Applied Physics Letters, 2019, 115, .	3.3	11
142	Silica Nanotubes by Templated Thermolysis of Silicon Tetraacetate. Chemistry of Materials, 2011, 23, 3129-3131.	6.7	10
143	Biological and Bioinspired Micro- and Nanostructured Adhesives. , 2013, , 409-439.		10
144	Thin-walled Er3+:Y2O3 nanotubes showing up-converted fluorescence. Physical Chemistry Chemical Physics, 2009, 11, 3623.	2.8	9

#	Article	IF	Citations
145	Adiabatic burst evaporation from bicontinuous nanoporous membranes. Nanoscale, 2015, 7, 9185-9193.	5.6	9
146	The Influence of Surface Topography and Surface Chemistry on the Anti-Adhesive Performance of Nanoporous Monoliths. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22593-22604.	8.0	9
147	Substrate Patterning Using Regular Macroporous Block Copolymer Monoliths as Sacrificial Templates and as Capillary Microstamps. Small, 2018, 14, e1801452.	10.0	9
148	Reactive Templates: Doing Chemistry with Pore Walls. Advanced Materials, 2008, 20, 1218-1221.	21.0	8
149	Templated selfâ€assembly of block copolymers – Toward the rational design of plasmonic nanorods. Physica Status Solidi (B): Basic Research, 2010, 247, 2470-2475.	1.5	8
150	Bioinspired monolithic polymer microsphere arrays as generically anti-adhesive surfaces. Bioinspiration and Biomimetics, 2016, 11, 025002.	2.9	8
151	Preparation, loading, and cytotoxicity analysis of polymer nanotubes from an ethylene glycol dimethacrylate homopolymer in comparison to multiâ€walled carbon nanotubes. Journal of Interdisciplinary Nanomedicine, 2016, 1, 9-18.	3.6	8
152	Manipulating Semicrystalline Polymers in Confinement. Journal of Physical Chemistry B, 2017, 121, 7723-7728.	2.6	8
153	Effect of confinement on the dynamics of 1-propanol and other monohydroxy alcohols. Journal of Chemical Physics, 2021, 155, 184504.	3.0	8
154	Bio-inspired adhesion control with liquids. IScience, 2022, 25, 103864.	4.1	8
155	Non-equilibrium Effects of Polymer Dynamics under Nanometer Confinement: Effects of Architecture and Molar Mass. Journal of Physical Chemistry B, 2022, 126, 5570-5581.	2.6	8
156	NanodrÃĦte und Nanoröhren mit Polymeren. Nachrichten Aus Der Chemie, 2004, 52, 426-431.	0.0	7
157	Liquid Crystalline Nanowires in Porous Alumina:Â Geometric Confinement versus Influence of Pore Walls. Nano Letters, 2005, 5, 995-995.	9.1	7
158	Nanometer Confinement Induces Nematic Order in 1-Dodecanol. Journal of Physical Chemistry B, 2020, 124, 10850-10857.	2.6	7
159	Effect of Star Architecture on the Dynamics of 1,4- <i>cis</i> -Polyisoprene under Nanometer Confinement. Macromolecules, 2021, 54, 11392-11403.	4.8	7
160	Nanofasern und Nanoröhrchen: Bausteine aus Polymeren. Chemie in Unserer Zeit, 2005, 39, 26-35.	0.1	6
161	Photonic Crystal Devices with Multiple Dyes by Consecutive Local Infiltration of Single Pores. Advanced Materials, 2010, 22, 4731-4735.	21.0	6
162	Formation of gold nanoparticles in polymeric nanowires by low-temperature thermolysis of gold mesitylene. Journal of Materials Chemistry, 2012, 22, 684-690.	6.7	6

#	Article	IF	CITATIONS
163	Capillary Stamping of Functional Materials: Parallel Additive Substrate Patterning without Ink Depletion. Advanced Materials Interfaces, 2021, 8, 2001911.	3.7	6
164	Imprinting macropore arrays into mesoporous silica monoliths. Journal of Materials Chemistry, 2012, 22, 9490.	6.7	5
165	Nanostructured Submicron Block Copolymer Dots by Sacrificial Stamping: A Potential Preconcentration Platform for Locally Resolved Sensing, Chemistry, and Cellular Interactions. ACS Applied Nano Materials, 2018, 1, 1413-1419.	5.0	5
166	Correlations between microstructure and crystallization of the fluorinated terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1402-1408.	2.1	5
167	Ferroelectric Lead Zirconate Titanate and Barium Titanate Nanoshell Tubes. Materials Research Society Symposia Proceedings, 2003, 782, 1.	0.1	4
168	Biopolymers for Biosensors: Polypeptide Nanotubes for Optical Biosensing. ACS Symposium Series, 2008, , 371-390.	0.5	4
169	High-Throughput Generation of Micropatterns of Dye-Containing Capsules Embedded in Transparent Elastomeric Monoliths by Inkjet Printing. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1169-1173.	8.0	4
170	Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity. Journal of Materials Chemistry C, 2013, 1, 7758.	5.5	4
171	Comparative Studies of Light-Responsive Swimmers: Janus Nanorods versus Spherical Particles. Langmuir, 2020, 36, 12504-12512.	3.5	4
172	Fast Evaporation Enabled Ultrathin Polymer Coatings on Nanoporous Substrates for Highly Permeable Membranes. Innovation(China), 2021, 2, 100088.	9.1	4
173	Phenolic Resin Dual-Use Stamps for Capillary Stamping and Decal Transfer Printing. ACS Applied Materials & Decal Transfer Printing. ACS	8.0	4
174	Statistical Analysis of Submicron X-ray Tomography Data on Polymer Imbibition into Arrays of Cylindrical Nanopores. Journal of Physical Chemistry C, 2021, 125, 26731-26743.	3.1	4
175	Designing polymeric nanorod arrays for optical waveguide-based biosensors. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 3179-3182.	0.8	3
176	Immobilization of Water Drops on Hydrophobic Surfaces by Contact Line Pinning at Nonlithographically Generated Polymer Microfiber Rings. Advanced Materials Interfaces, 2018, 5, 1801191.	3.7	3
177	From Bad Electrochemical Practices to an Environmental and Waste Reducing Approach for the Generation of Active Hydrogen Evolving Electrodes. Angewandte Chemie, 2019, 131, 17544-17553.	2.0	3
178	Thin Patterned Lithium Niobate Films by Parallel Additive Capillary Stamping of Aqueous Precursor Solutions. Advanced Engineering Materials, 2022, 24, 2101159.	3.5	3
179	Quantum-Dot/Dendrimer Based Functional Nanotubes for Sensitive Detection of DNA Hybridization. Advances in Science and Technology, 2008, 55, 84-90.	0.2	2
180	Production of Highly Ordered Nanoporous Alumina and its Application in Cell Cultivation. Materials Research Society Symposia Proceedings, 2008, 1093, 41601.	0.1	2

#	Article	IF	Citations
181	Manipulating feature sizes in Si-based grating structures by thermal oxidation. Nanotechnology, 2008, 19, 325305.	2.6	2
182	Characterization of microrod arrays by image analysis. Applied Physics Letters, 2009, 94, 164103.	3.3	2
183	Fiber ―and Tube ―Formation by Melt Infiltration of Block Copolymers into Al ₂ O ₃ â€Pores. Macromolecular Symposia, 2010, 293, 58-62.	0.7	2
184	Nanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity. Materials, 2016, 9, 373.	2.9	2
185	Tailored pore gradient in phenolic membranes for adjustable permselectivity by leveraging different poloxamers. Separation and Purification Technology, 2020, 242, 116818.	7.9	2
186	Sensitivity of PS/CoPd Janus particles to an external magnetic field. RSC Advances, 2021, 11, 17051-17057.	3.6	2
187	Melting Temperature Depression and Phase Transitions of Nitrate-Based Molten Salts in Nanoconfinement. ACS Omega, 2022, 7, 24669-24678.	3. 5	2
188	Nanoscopic building blocks from polymers, metals, and semiconductors. , 2007, , .		1
189	Templateâ€controlled thermolysis of singleâ€sourceâ€precursors. Physica Status Solidi (B): Basic Research, 2010, 247, 2393-2400.	1.5	1
190	Slippery polymer monoliths: Surface functionalization with ordered MoS2 microparticle arrays. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126363.	4.7	1
191	Cationic Ordering and Its Influence on the Magnetic Properties of Co-Rich Cobalt Ferrite Thin Films Prepared by Reactive Solid Phase Epitaxy on Nb-Doped SrTiO3(001). Materials, 2022, 15, 46.	2.9	1
192	Nanotubes by Template Wetting: A Modular Assembly System. ChemInform, 2004, 35, no.	0.0	0
193	Anisotropic domain orientation and local, reversible polarisation switching in textured ferroelectric polymer nanofibers. , 2008, , .		0
194	Local infiltration of individual pores with dyes in 2D macroporous silicon photonic crystals., 2008,,.		0
195	Nanoporous Metal Membranes: Nanoporous Metal Membranes with Bicontinuous Morphology from Recyclable Blockâ€Copolymer Templates (Adv. Mater. 18/2010). Advanced Materials, 2010, 22, .	21.0	0
196	Mesoscopic Structure Formation in the Walls of Nanotubes Confined to Nanoporous Hard Templates. , 2011, , 127-163.		0
197	Oxygen Plasma Effects on Zero Resistance Behavior of Yb,Erâ€doped YBCO (123) Based Superconductors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1900-1906.	1.2	0
198	Experimentelles Zentralabitur in Niedersachsen - Quo Vadis?. Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik, 2017, 24, 77-79.	0.4	0

#	Article	IF	CITATIONS
199	Quantifying the structural integrity of nanorod arrays. Journal of Microscopy, 2017, 265, 222-231.	1.8	0
200	Effects of Nanometer Confinement on the Self-Assembly and Dynamics of Poly(\hat{l}^3 -benzyl- <scp> </scp> -glutamate) and Its Copolymer with Poly(isobutylene). Macromolecules, 2022, 55, 2615-2626.	4.8	0