Sandra Pinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4905103/publications.pdf Version: 2024-02-01

ΟΗΝΙΟ ΛΟΠΑΙΟ

#	Article	IF	CITATIONS
1	The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell, 2022, 29, 232-247.e7.	11.1	41
2	VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells. Nature Cell Biology, 2022, 24, 290-298.	10.3	19
3	Using CT-guided stereotactic prostate radiation therapy (CT-SPRT) to assess sustained murine prostate ablation. Scientific Reports, 2021, 11, 6571.	3.3	0
4	MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nature Communications, 2021, 12, 2522.	12.8	27
5	In memory of Paul Sylvain Frenette, a pioneering explorer of the hematopoietic stem cell niche who left far too early. Experimental Hematology, 2021, , .	0.4	0
6	Paul S. Frenette (1965–2021). Cell, 2021, 184, 5073-5076.	28.9	1
7	Paul S. Frenette (1965–2021). Nature Cell Biology, 2021, 23, 1049-1050.	10.3	0
8	Paul S. Frenette (1965–2021). Cell Stem Cell, 2021, 28, 1686-1689.	11.1	0
9	Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities. Frontiers in Immunology, 2021, 12, 775128.	4.8	36
10	In Situ Hematopoietic Stem Cell Imaging. Methods in Molecular Biology, 2021, 2185, 373-382.	0.9	0
11	Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood, 2019, 133, 1222-1232.	1.4	44
12	The bone marrow microenvironment at single-cell resolution. Nature, 2019, 569, 222-228.	27.8	624
13	Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nature Cell Biology, 2019, 21, 560-567.	10.3	74
14	Haematopoietic stem cell activity andÂinteractions with the niche. Nature Reviews Molecular Cell Biology, 2019, 20, 303-320.	37.0	588
15	VCAM1 Confers Innate Immune Tolerance on Hematopoietic and Leukemic Stem Cells. Blood, 2019, 134, 524-524.	1.4	0
16	Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches. Developmental Cell, 2018, 44, 634-641.e4.	7.0	154
17	CD150high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine. Cell Stem Cell, 2018, 22, 445-453.e5.	11.1	188
18	Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nature Medicine, 2018, 24, 782-791.	30.7	253

Sandra Pinho

#	Article	IF	CITATIONS
19	Adenosine from Niche-Associated Tregs Maintains Hematopoietic Stem Cell Quiescence. Blood, 2017, 130, 91-91.	1.4	2
20	Self-renewal of a purified <i>Tie2</i> ⁺ hematopoietic stem cell population relies on mitochondrial clearance. Science, 2016, 354, 1156-1160.	12.6	251
21	Targeting Mac-1-mediated leukocyte–RBC interactions uncouples the benefits for acute vaso-occlusion and chronic organ damage. Experimental Hematology, 2016, 44, 940-946.	0.4	15
22	Fetal liver hematopoietic stem cell niches associate with portal vessels. Science, 2016, 351, 176-180.	12.6	193
23	Vcam1 Is a "Don't-Eat-Me" Signal on Healthy Hematopoietic and Leukemic Stem Cells. Blood, 2016, 128, 565-565.	1.4	0
24	Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine, 2014, 20, 1315-1320.	30.7	483
25	Acute Myelogenous Leukemia-Induced Sympathetic Neuropathy Promotes Malignancy in an Altered Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 365-375.	11.1	308
26	Osterix Marks Distinct Waves of Primitive and Definitive Stromal Progenitors during Bone Marrow Development. Developmental Cell, 2014, 29, 340-349.	7.0	365
27	Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502, 637-643.	27.8	1,002
28	Simultaneous quantification of tramadol and <i>O</i> â€desmethyltramadol in hair samples by gas chromatography–electron impact/mass spectrometry. Biomedical Chromatography, 2013, 27, 1003-1011.	1.7	31
29	Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine. Annual Review of Immunology, 2013, 31, 285-316.	21.8	381
30	Endothelial Jagged-1 Is Necessary for Homeostatic and Regenerative Hematopoiesis. Cell Reports, 2013, 4, 1022-1034.	6.4	224
31	CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nature Medicine, 2013, 19, 429-436.	30.7	370
32	MSC Niche for Hematopoiesis. , 2013, , 91-106.		0
33	PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. Journal of Experimental Medicine, 2013, 210, 1351-1367.	8.5	425
34	ICI 182,780 induces P-cadherin overexpression in breast cancer cells through chromatin remodelling at the promoter level: a role for C/EBPA in CDH3 gene activation. Human Molecular Genetics, 2010, 19, 2554-2566.	2.9	18
35	Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development (Cambridge), 2010, 137, 2483-2492.	2.5	102
36	Senescence impairs successful reprogramming to pluripotent stem cells. Genes and Development, 2009, 23, 2134-2139.	5.9	553

#	Article	IF	CITATIONS
37	Biological significance of cancer-associated sialyl-Tn antigen: Modulation of malignant phenotype in gastric carcinoma cells. Cancer Letters, 2007, 249, 157-170.	7.2	142
38	Role of the Human ST6GalNAc-I and ST6GalNAc-II in the Synthesis of the Cancer-Associated Sialyl-Tn Antigen. Cancer Research, 2004, 64, 7050-7057.	0.9	203