Valerie A Odero-Marah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4903750/publications.pdf

Version: 2024-02-01

26 papers 1,739 citations

394421 19 h-index 26 g-index

26 all docs

 $\begin{array}{c} 26 \\ \text{docs citations} \end{array}$

26 times ranked 3034 citing authors

#	Article	IF	CITATIONS
1	Insulin-like Growth Factor-I–Dependent Up-regulation of ZEB1 Drives Epithelial-to-Mesenchymal Transition in Human Prostate Cancer Cells. Cancer Research, 2008, 68, 2479-2488.	0.9	336
2	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
3	Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clinical and Experimental Metastasis, 2008, 25, 601-610.	3.3	147
4	Receptor activator of NF-κB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Research, 2008, 18, 858-870.	12.0	123
5	Epithelial-Mesenchymal Transition (EMT) and Prostate Cancer. Advances in Experimental Medicine and Biology, 2018, 1095, 101-110.	1.6	122
6	The role of Snail in prostate cancer. Cell Adhesion and Migration, 2012, 6, 433-441.	2.7	99
7	Snail Promotes Epithelial Mesenchymal Transition in Breast Cancer Cells in Part via Activation of Nuclear ERK2. PLoS ONE, 2014, 9, e104987.	2.5	94
8	Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate, 2010, 70, 982-992.	2.3	86
9	Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells. Biochemical and Biophysical Research Communications, 2011, 404, 34-39.	2.1	61
10	Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression. Cell Adhesion and Migration, 2015, 9, 255-264.	2.7	58
11	Muscadine grape skin extract can antagonize Snail-cathepsin L-mediated invasion, migration and osteoclastogenesis in prostate and breast cancer cells. Carcinogenesis, 2015, 36, 1019-1027.	2.8	48
12	High mobility group A2 (HMGA2) promotes EMT via MAPK pathway in prostate cancer. Biochemical and Biophysical Research Communications, 2018, 504, 196-202.	2.1	48
13	Snail negatively regulates cell adhesion to extracellular matrix and integrin expression via the MAPK pathway in prostate cancer cells. Cell Adhesion and Migration, 2011, 5, 249-257.	2.7	41
14	The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis, 2015, 36, S128-S159.	2.8	40
15	Proteomics-Metabolomics Combined Approach Identifies Peroxidasin as a Protector against Metabolic and Oxidative Stress in Prostate Cancer. International Journal of Molecular Sciences, 2019, 20, 3046.	4.1	32
16	Muscadine Grape Skin Extract Induces an Unfolded Protein Response-Mediated Autophagy in Prostate Cancer Cells: A TMT-Based Quantitative Proteomic Analysis. PLoS ONE, 2016, 11, e0164115.	2.5	31
17	Targeting the Nuclear Cathepsin L CCAAT Displacement Protein/Cut Homeobox Transcription Factor-Epithelial Mesenchymal Transition Pathway in Prostate and Breast Cancer Cells with the Z-FY-CHO Inhibitor. Molecular and Cellular Biology, 2017, 37, .	2.3	26
18	Muscadine grape skin extract reverts snail-mediated epithelial mesenchymal transition via superoxide species in human prostate cancer cells. BMC Complementary and Alternative Medicine, 2014, 14, 97.	3.7	22

#	Article	IF	CITATIONS
19	Camalexin-Induced Apoptosis in Prostate Cancer Cells Involves Alterations of Expression and Activity of Lysosomal Protease Cathepsin D. Molecules, 2014, 19, 3988-4005.	3.8	21
20	The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species. Journal of Natural Medicines, 2013, 67, 607-618.	2.3	16
21	Larrea tridentata Extract Mitigates Oxidative Stress-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. Antioxidants, 2019, 8, 427.	5.1	15
22	Snail transcription factor NLS and importin \hat{l}^21 regulate the subcellular localization of Cathepsin L and Cux1. Biochemical and Biophysical Research Communications, 2017, 491, 59-64.	2.1	14
23	CCAAT-displacement protein/cut homeobox transcription factor (CUX1) represses estrogen receptor-alpha (ER-α) in triple-negative breast cancer cells and can be antagonized by muscadine grape skin extract (MSKE). PLoS ONE, 2019, 14, e0214844.	2.5	8
24	Association of Epithelial Mesenchymal Transition with prostate and breast health disparities. PLoS ONE, 2018, 13, e0203855.	2.5	7
25	Cancerâ€bone microenvironmental interactions promotes STAT3 signaling. Molecular Carcinogenesis, 2019, 58, 1349-1361.	2.7	3
26	Val16A SOD2 Polymorphism Promotes Epithelial–Mesenchymal Transition Antagonized by Muscadine Grape Skin Extract in Prostate Cancer Cells. Antioxidants, 2021, 10, 213.	5.1	2