Esther Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4903510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Conserved MST-FOXO Signaling Pathway Mediates Oxidative-Stress Responses and Extends Life Span. Cell, 2006, 125, 987-1001.	28.9	758
2	Consensus Paper: Cerebellar Development. Cerebellum, 2016, 15, 789-828.	2.5	337
3	Cell cycle regulation of neuronal apoptosis in development and disease. Progress in Neurobiology, 2004, 72, 1-25.	5.7	274
4	JNK Phosphorylation and Activation of BAD Couples the Stress-activated Signaling Pathway to the Cell Death Machinery. Journal of Biological Chemistry, 2002, 277, 40944-40949.	3.4	212
5	Autism Spectrum Disorder and the Cerebellum. International Review of Neurobiology, 2013, 113, 1-34.	2.0	197
6	p38 MAP Kinase Mediates Apoptosis through Phosphorylation of BimEL at Ser-65. Journal of Biological Chemistry, 2006, 281, 25215-25222.	3.4	195
7	A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6706-6711.	7.1	187
8	Activation of FOXO1 by Cdk1 in Cycling Cells and Postmitotic Neurons. Science, 2008, 319, 1665-1668.	12.6	167
9	Apoptosis Induced by p75NTR Overexpression Requires Jun Kinase-Dependent Phosphorylation of Bad. Journal of Neuroscience, 2003, 23, 11373-11381.	3.6	156
10	Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain, 2013, 136, 3106-3118.	7.6	146
11	Bim Regulation of Lumen Formation in Cultured Mammary Epithelial Acini Is Targeted by Oncogenes. Molecular and Cellular Biology, 2005, 25, 4591-4601.	2.3	130
12	Oxr1 ls Essential for Protection against Oxidative Stress-Induced Neurodegeneration. PLoS Genetics, 2011, 7, e1002338.	3.5	130
13	A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex. Neuron, 2016, 89, 536-549.	8.1	124
14	Characterization of the c-Jun N-Terminal Kinase-BimEL Signaling Pathway in Neuronal Apoptosis. Journal of Neuroscience, 2004, 24, 8762-8770.	3.6	108
15	Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 437-440.	1.9	105
16	Specific role for cathepsin S in the generation of antigenic peptidesin vivo. European Journal of Immunology, 2002, 32, 467-476.	2.9	98
17	Do mutations in the murine ataxia gene <i>TRPC3</i> cause cerebellar ataxia in humans?. Movement Disorders, 2015, 30, 284-286.	3.9	78
18	Pin1 Mediates Neural-Specific Activation of the Mitochondrial Apoptotic Machinery. Neuron, 2006, 49, 655-662	8.1	73

ESTHER BECKER

#	Article	IF	CITATIONS
19	Dominant Mutations in GRM1 Cause Spinocerebellar Ataxia Type 44. American Journal of Human Genetics, 2017, 101, 451-458.	6.2	62
20	Cerebellar involvement in autism and ADHD. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 155, 61-72.	1.8	56
21	A JIP3-Regulated CSK3β/DCX Signaling Pathway Restricts Axon Branching. Journal of Neuroscience, 2010, 30, 16766-16776.	3.6	51
22	A Simplified Method for Generating Purkinje Cells from Human-Induced Pluripotent Stem Cells. Cerebellum, 2018, 17, 419-427.	2.5	48
23	TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. ELife, 2019, 8, .	6.0	45
24	Early Onset of Ataxia in Moonwalker Mice Is Accompanied by Complete Ablation of Type II Unipolar Brush Cells and Purkinje Cell Dysfunction. Journal of Neuroscience, 2013, 33, 19689-19694.	3.6	41
25	The Moonwalker Mouse: New Insights into TRPC3 Function, Cerebellar Development, and Ataxia. Cerebellum, 2014, 13, 628-636.	2.5	41
26	Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biology, 2015, 5, 150056.	3.6	38
27	Neurodegeneration in SCA14 is associated with increased PKCÎ ³ kinase activity, mislocalization and aggregation. Acta Neuropathologica Communications, 2018, 6, 99.	5.2	37
28	Beyond proliferation—cell cycle control of neuronal survival and differentiation in the developing mammalian brain. Seminars in Cell and Developmental Biology, 2005, 16, 439-448.	5.0	33
29	Deconstructing cerebellar development cell by cell. PLoS Genetics, 2020, 16, e1008630.	3.5	32
30	High-resolution transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Scientific Reports, 2021, 11, 12959.	3.3	32
31	Functional expression of calciumâ€permeable canonical transient receptor potential 4â€containing channels promotes migration of medulloblastoma cells. Journal of Physiology, 2017, 595, 5525-5544.	2.9	30
32	Candidate Screening of the TRPC3 Gene in Cerebellar Ataxia. Cerebellum, 2011, 10, 296-299.	2.5	27
33	Reciprocal regulation of two G protein-coupled receptors sensing extracellular concentrations of Ca ²⁺ and H ⁺ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10738-10743.	7.1	27
34	Genotypeâ€phenotype correlations, dystonia and disease progression in spinocerebellar ataxia type 14. Movement Disorders, 2018, 33, 1119-1129.	3.9	26
35	The mutant Moonwalker TRPC3 channel links calcium signaling to lipid metabolism in the developing cerebellum. Human Molecular Genetics, 2015, 24, 4114-4125.	2.9	24
36	Pin1 in Neuronal Apoptosis. Cell Cycle, 2007, 6, 1332-1335.	2.6	23

ESTHER BECKER

#	Article	IF	CITATIONS
37	A gene expression signature in developing Purkinje cells predicts autism and intellectual disability co-morbidity status. Scientific Reports, 2019, 9, 485.	3.3	14
38	Recent advances in modelling of cerebellar ataxia using induced pluripotent stem cells. Journal of Neurology and Neuromedicine, 2017, 2, 11-15.	0.9	11
39	Modeling Suggests TRPC3 Hydrogen Bonding and Not Phosphorylation Contributes to the Ataxia Phenotype of the <i>Moonwalker</i> Mouse. Biochemistry, 2015, 54, 4033-4041.	2.5	10
40	From Mice to Men: TRPC3 in Cerebellar Ataxia. Cerebellum, 2017, 16, 877-879.	2.5	10
41	Carbon source-dependent transcriptional regulation of the QCR8 gene in Kluyveromyces lactis Current Genetics, 2001, 39, 311-318.	1.7	6
42	The Use of Stem Cell-Derived Neurons for Understanding Development and Disease of the Cerebellum. Frontiers in Neuroscience, 2018, 12, 646.	2.8	5
43	Caspr2 interacts with type 1 inositol 1,4,5-trisphosphate receptor in the developing cerebellum and regulates Purkinje cell morphology. Journal of Biological Chemistry, 2020, 295, 12716-12726.	3.4	3
44	Cerebellar Modelling Using Human Induced Pluripotent Stem Cells. Neuromethods, 2022, , 1-21.	0.3	2
45	Moonwalker Mouse. , 2020, , 1-16.		1
46	Moonwalker Mouse. , 2022, , 1773-1788.		0