
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4903328/publications.pdf Version: 2024-02-01

IAN H CUREDT

#	Article	IF	CITATIONS
1	Automated design of ligands to polypharmacological profiles. Nature, 2012, 492, 215-220.	27.8	698
2	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	30.2	439
3	Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem, 2008, 3, 435-444.	3.2	409
4	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
5	Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nature Reviews Microbiology, 2017, 15, 217-231.	28.6	315
6	N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature, 2010, 464, 728-732.	27.8	272
7	Challenges and recent progress in drug discovery for tropical diseases. Nature, 2018, 559, 498-506.	27.8	164
8	Drug Discovery for Neglected Diseases: Molecular Target-Based and Phenotypic Approaches. Journal of Medicinal Chemistry, 2013, 56, 7719-7726.	6.4	158
9	Design and Synthesis of a Series of Melamine-based Nitroheterocycles with Activity against Trypanosomatid Parasites. Journal of Medicinal Chemistry, 2005, 48, 5570-5579.	6.4	153
10	Synthesis and Biological Evaluation ofs-Triazine Substituted Polyamines as Potential New Anti-Trypanosomal Drugs. Journal of Medicinal Chemistry, 2001, 44, 3440-3452.	6.4	135
11	Comparison of a High-Throughput High-Content Intracellular Leishmania donovani Assay with an Axenic Amastigote Assay. Antimicrobial Agents and Chemotherapy, 2013, 57, 2913-2922.	3.2	135
12	Fragment-based hit identification: thinking in 3D. Drug Discovery Today, 2013, 18, 1221-1227.	6.4	132
13	Target assessment for antiparasitic drug discovery. Trends in Parasitology, 2007, 23, 589-595.	3.3	130
14	Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9318-9323.	7.1	119
15	Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature, 2018, 560, 192-197.	27.8	112
16	Dihydroquinazolines as a Novel Class of Trypanosoma brucei Trypanothione Reductase Inhibitors: Discovery, Synthesis, and Characterization of their Binding Mode by Protein Crystallography. Journal of Medicinal Chemistry, 2011, 54, 6514-6530.	6.4	110
17	Discovery of a Novel Class of Orally Active Trypanocidal <i>N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 140-152.	6.4	102
18	Target Validation: Linking Target and Chemical Properties to Desired Product Profile. Current Topics in Medicinal Chemistry, 2011, 11, 1275-1283.	2.1	99

#	Article	IF	CITATIONS
19	Azasterols as Inhibitors of Sterol 24-Methyltransferase in Leishmania Species and Trypanosoma cruzi. Journal of Medicinal Chemistry, 2003, 46, 4714-4727.	6.4	96
20	One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening. Journal of Medicinal Chemistry, 2009, 52, 4454-4465.	6.4	96
21	Analogues of Thiolactomycin as Potential Antimalarial Agents. Journal of Medicinal Chemistry, 2005, 48, 5932-5941.	6.4	95
22	Inhibitors of dihydrofolate reductase in leishmania and trypanosomes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1587, 249-257.	3.8	94
23	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
24	Novel Azasterols as Potential Agents for Treatment of Leishmaniasis and Trypanosomiasis. Antimicrobial Agents and Chemotherapy, 2004, 48, 2937-2950.	3.2	93
25	Whole Organism High-Content Screening by Label-Free, Image-Based Bayesian Classification for Parasitic Diseases. PLoS Neglected Tropical Diseases, 2012, 6, e1762.	3.0	93
26	Clinical and veterinary trypanocidal benzoxaboroles target CPSF3. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9616-9621.	7.1	90
27	Screening Congo Red and its analogues for their ability to prevent the formation of PrP-res in scrapie-infected cells. Journal of General Virology, 2000, 81, 1155-1164.	2.9	89
28	dUTPase as a Platform for Antimalarial Drug Design: Structural Basis for the Selectivity of a Class of Nucleoside Inhibitors. Structure, 2005, 13, 329-338.	3.3	81
29	Design, Synthesis, and Evaluation of Inhibitors of Trypanosomal and Leishmanial Dihydrofolate Reductase. Journal of Medicinal Chemistry, 1999, 42, 4300-4312.	6.4	79
30	Analogues of thiolactomycin as potential anti-malarial and anti-trypanosomal agents. Bioorganic and Medicinal Chemistry, 2004, 12, 683-692.	3.0	77
31	Characterising covalent warhead reactivity. Bioorganic and Medicinal Chemistry, 2019, 27, 2066-2074.	3.0	71
32	Novel inhibitors of Trypanosoma cruzi dihydrofolate reductase. European Journal of Medicinal Chemistry, 2001, 36, 395-405.	5.5	69
33	Chemical Validation of Trypanothione Synthetase. Journal of Biological Chemistry, 2009, 284, 36137-36145.	3.4	68
34	Deoxyuridine Triphosphate Nucleotidohydrolase as a Potential Antiparasitic Drug Target. Journal of Medicinal Chemistry, 2005, 48, 5942-5954.	6.4	67
35	N-(2-hydroxypropyl)methacrylamide–amphotericin B (HPMA–AmB) copolymer conjugates as antileishmanial agents. International Journal of Antimicrobial Agents, 2009, 33, 441-448.	2.5	67
36	Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy. Journal of Medicinal Chemistry, 2016, 59, 9672-9685.	6.4	66

IAN H GILBERT

#	Article	IF	CITATIONS
37	Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Medicinal Chemistry Letters, 2013, 4, 1005-1010.	2.8	65
38	In vitro cell-free conversion of bacterial recombinant PrP to PrPres as a model for conversion. Journal of General Virology, 2003, 84, 1013-1020.	2.9	63
39	Improved Tricyclic Inhibitors of Trypanothione Reductase by Screening and Chemical Synthesis. ChemMedChem, 2009, 4, 1333-1340.	3.2	63
40	Evaluation of Azasterols as Anti-Parasitics. Journal of Medicinal Chemistry, 2006, 49, 6094-6103.	6.4	62
41	Discovery and Structure–Activity Relationships of Pyrrolone Antimalarials. Journal of Medicinal Chemistry, 2013, 56, 2975-2990.	6.4	62
42	Design and Synthesis of Lipophilic Phosphoramidate d4T-MP Prodrugs Expressing High Potency Against HIV in Cell Culture:  Structural Determinants for in Vitro Activity and QSAR. Journal of Medicinal Chemistry, 1999, 42, 4122-4128.	6.4	61
43	Design, synthesis and evaluation of 2,4-diaminoquinazolines as inhibitors of trypanosomal and leishmanial dihydrofolate reductase. Bioorganic and Medicinal Chemistry, 2005, 13, 2637-2649.	3.0	58
44	Synthesis of Analogues of Congo Red and Evaluation of Their Anti-Prion Activity. Journal of Medicinal Chemistry, 2004, 47, 5515-5534.	6.4	57
45	Acyclic Nucleoside Analogues as Inhibitors ofPlasmodiumfalciparumdUTPase. Journal of Medicinal Chemistry, 2006, 49, 4183-4195.	6.4	57
46	Lead Optimization of a Pyrazole Sulfonamide Series of <i>Trypanosoma brucei</i> <i>N</i> -Myristoyltransferase Inhibitors: Identification and Evaluation of CNS Penetrant Compounds as Potential Treatments for Stage 2 Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2014, 57, 9855-9869.	6.4	57
47	Trypanocidal Activity of Melamine-Based Nitroheterocycles. Antimicrobial Agents and Chemotherapy, 2004, 48, 1733-1738.	3.2	56
48	Dihydrofolate reductase: a potential drug target in trypanosomes and leishmania. Journal of Computer-Aided Molecular Design, 1998, 12, 241-257.	2.9	55
49	Molecular dynamics simulations of wild-type and point mutation human prion protein at normal and elevated temperature. Journal of Molecular Graphics and Modelling, 2001, 20, 145-154.	2.4	55
50	Kinetic Characterization of Squalene Synthase from Trypanosoma cruzi: Selective Inhibition by Quinuclidine Derivatives. Antimicrobial Agents and Chemotherapy, 2007, 51, 2123-2129.	3.2	55
51	Pharmacological Validation of <i>N</i> -Myristoyltransferase as a Drug Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2019, 5, 111-122.	3.8	55
52	Investigation of Trypanothione Reductase as a Drug Target in <i>Trypanosoma brucei</i> . ChemMedChem, 2009, 4, 2060-2069.	3.2	54
53	2,4-Diaminopyrimidines as inhibitors of Leishmanial and Trypanosomal dihydrofolate reductase. Bioorganic and Medicinal Chemistry, 2003, 11, 4693-4711.	3.0	53
54	Targeting of Toxic Compounds to the Trypanosome's Interior. Advances in Parasitology, 2006, 63, 125-183.	3.2	52

#	Article	IF	CITATIONS
55	Aryl Phosphoramidates of 5-Phospho Erythronohydroxamic Acid, A New Class of Potent Trypanocidal Compounds. Journal of Medicinal Chemistry, 2010, 53, 6071-6078.	6.4	52
56	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	3.3	51
57	Synthesis and evaluation of analogues of congo red as potential compounds against transmissible spongiform encephalopathies. European Journal of Medicinal Chemistry, 2003, 38, 567-579.	5.5	49
58	Perspectives for New Drugs Against Trypanosomiasis and Leishmaniasis. Current Topics in Medicinal Chemistry, 2002, 2, 471-482.	2.1	48
59	Nitrile Reduction in the Presence of Boc-Protected Amino Groups by Catalytic Hydrogenation over Palladium-Activated Raney-Nickel. Journal of Organic Chemistry, 2001, 66, 2480-2483.	3.2	46
60	Acetazolamide-based fungal chitinase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 8334-8340.	3.0	46
61	An approach to use an unusual adenosine transporter to selectively deliver polyamine analogues to trypanosomes. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 811-816.	2.2	45
62	Synthesis and Evaluation of 1â€(1â€(Benzo[<i>b</i>]thiophenâ€2â€yl)cyclohexyl)piperidine (BTCP) Analogues as Inhibitors of Trypanothione Reductase. ChemMedChem, 2009, 4, 1341-1353.	3.2	45
63	Identification of Inhibitors of the <i>Leishmania</i> cdc2â€Related Protein Kinase CRK3. ChemMedChem, 2011, 6, 2214-2224.	3.2	45
64	Biochemical and Structural Characterization of Selective Allosteric Inhibitors of the <i>Plasmodium falciparum</i> Drug Target, Prolyl-tRNA-synthetase. ACS Infectious Diseases, 2017, 3, 34-44.	3.8	45
65	Synthesis of β-keto and α,β-unsaturated N-acetylcysteamine thioesters. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1587-1590.	2.2	44
66	Novel inhibitors of leishmanial dihydrofolate reductase. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 977-980.	2.2	44
67	Design, synthesis and evaluation of novel uracil acetamide derivatives as potential inhibitors of Plasmodium falciparum dUTP nucleotidohydrolase. European Journal of Medicinal Chemistry, 2009, 44, 678-688.	5.5	43
68	Design, Synthesis and Biological Evaluation of <i>Trypanosoma brucei</i> Trypanothione Synthetase Inhibitors. ChemMedChem, 2012, 7, 95-106.	3.2	42
69	Biphenylquinuclidines as inhibitors of squalene synthase and growth of parasitic protozoa. Bioorganic and Medicinal Chemistry, 2005, 13, 3519-3529.	3.0	41
70	A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant <i>N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8374-8389.	6.4	41
71	Quinuclidine Derivatives as Potential Antiparasitics. Antimicrobial Agents and Chemotherapy, 2007, 51, 4049-4061.	3.2	40
72	Handling Uncertainty in Dynamic Models: The Pentose Phosphate Pathway in Trypanosoma brucei. PLoS Computational Biology, 2013, 9, e1003371.	3.2	40

#	Article	IF	CITATIONS
73	Solid Phase Synthesis of Purines from Pyrimidines. ACS Combinatorial Science, 2000, 2, 249-253.	3.3	39
74	Design, Synthesis and Biological Evaluation of Novel Inhibitors of <i>Trypanosoma brucei</i> Pteridine Reductaseâ€1. ChemMedChem, 2011, 6, 302-308.	3.2	39
75	<i>Plasmodium</i> Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. ACS Infectious Diseases, 2021, 7, 518-534.	3.8	39
76	Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chemical Biology, 2022, 29, 191-201.e8.	5.2	39
77	Imidazolines as amide bond replacements. Tetrahedron, 1995, 51, 6315-6336.	1.9	38
78	Structural basis for the efficient phosphorylation of AZT-MP ($3\hat{a}\in^2$ -azido- $3\hat{a}\in^2$ -deoxythymidine) Tj ETQqO O O rgBT Journal, 2010, 428, 499-509.	/Overlock 3.7	10 Tf 50 54 38
79	<i>N</i> -Myristoyltransferase Is a Cell Wall Target in <i>Aspergillus fumigatus</i> . ACS Chemical Biology, 2015, 10, 1425-1434.	3.4	38
80	Lewis acid-catalysed rearrangements of myo-inositol orthoformate derivatives. Carbohydrate Research, 1992, 234, 117-130.	2.3	37
81	New Azasterols against Trypanosoma brucei : Role of 24-Sterol Methyltransferase in Inhibitor Action. Antimicrobial Agents and Chemotherapy, 2006, 50, 2595-2601.	3.2	37
82	Synthesis and Evaluation of α-Thymidine Analogues as Novel Antimalarials. Journal of Medicinal Chemistry, 2012, 55, 10948-10957.	6.4	36
83	Preparation of transition-state analogues of sterol 24-methyl transferase as potential anti-parasitics. Bioorganic and Medicinal Chemistry, 2005, 13, 5435-5453.	3.0	35
84	Fragment library design, synthesis and expansion: nurturing a synthesis and training platform. Drug Discovery Today, 2017, 22, 43-56.	6.4	35
85	Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.	3.8	35
86	Exploring the Trypanosoma brucei Hsp83 Potential as a Target for Structure Guided Drug Design. PLoS Neglected Tropical Diseases, 2013, 7, e2492.	3.0	34
87	Selective Inhibition of Trypanosoma brucei 6-Phosphogluconate Dehydrogenase by High-Energy Intermediate and Transition-State Analogues. Journal of Medicinal Chemistry, 2004, 47, 3427-3437.	6.4	33
88	Application of RNAi to Genomic Drug Target Validation in Schistosomes. PLoS Neglected Tropical Diseases, 2015, 9, e0003801.	3.0	33
89	Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2019, 62, 1180-1202.	6.4	33
90	The structure-based design and synthesis of selective inhibitors of trypanosoma cruzi dihydrofolate reductase. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1463-1468.	2.2	32

#	Article	IF	CITATIONS
91	Structure–Activity Relationship Studies of Pyrrolone Antimalarial Agents. ChemMedChem, 2013, 8, 1537-1544.	3.2	32
92	Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2017, 60, 7284-7299.	6.4	31
93	DNDI-6148: A Novel Benzoxaborole Preclinical Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2021, 64, 16159-16176.	6.4	31
94	Alterations on the growth and ultrastructure of Leishmania chagasi induced by squalene synthase inhibitors. Veterinary Parasitology, 2007, 146, 25-34.	1.8	30
95	Design, Synthesis, and Evaluation of 5′â€Ðiphenyl Nucleoside Analogues as Inhibitors of the <i>Plasmodium falciparum</i> dUTPase. ChemMedChem, 2011, 6, 1816-1831.	3.2	30
96	From Onâ€Target to Offâ€Target Activity: Identification and Optimisation of <i>Trypanosoma brucei</i> GSK3 Inhibitors and Their Characterisation as Antiâ€ <i>Trypanosoma brucei</i> Drug Discovery Lead Molecules. ChemMedChem, 2013, 8, 1127-1137.	3.2	30
97	Target-based drug discovery for human African trypanosomiasis: selection of molecular target and chemical matter. Parasitology, 2014, 141, 28-36.	1.5	30
98	6-Phosphogluconate Dehydrogenase: A Target for Drugs in African Trypanosomes. Current Medicinal Chemistry, 2004, 11, 2639-2650.	2.4	29
99	Targeted delivery of compounds to Trypanosoma brucei using the melamine motif. Bioorganic and Medicinal Chemistry, 2009, 17, 2512-2523.	3.0	29
100	Squalamine analogues as potential anti-trypanosomal and anti-leishmanial compounds. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1237-1239.	2.2	28
101	Finding New Hits in Neglected Disease Projects: Target or Phenotypic Based Screening?. Current Topics in Medicinal Chemistry, 2011, 11, 1284-1291.	2.1	28
102	Discovery of Indoline-2-carboxamide Derivatives as a New Class of Brain-Penetrant Inhibitors of <i>Trypanosoma brucei</i> . Journal of Medicinal Chemistry, 2015, 58, 7695-7706.	6.4	28
103	Synthesis and biological evaluation of substrate-Based inhibitors of 6-phosphogluconate dehydrogenase as potential drugs against African Trypanosomiasis. Bioorganic and Medicinal Chemistry, 2003, 11, 3205-3214.	3.0	27
104	Synthesis and Biological Evaluation of Phosphate Prodrugs of 4â€Phosphoâ€ <scp>D</scp> â€erythronohydroxamic Acid, an Inhibitor of 6â€Phosphogluconate Dehydrogenase. ChemMedChem, 2007, 2, 1169-1180.	3.2	27
105	Novel functionalized melamine-based nitroheterocycles: synthesis and activity against trypanosomatid parasites. Organic and Biomolecular Chemistry, 2009, 7, 1154.	2.8	26
106	Virtual fragment screening for novel inhibitors of 6-phosphogluconate dehydrogenase. Bioorganic and Medicinal Chemistry, 2010, 18, 5056-5062.	3.0	26
107	Antiplasmodial activity of a series of 1,3,5-triazine-substituted polyamines. Journal of Antimicrobial Chemotherapy, 2003, 52, 290-293.	3.0	25
108	Effects of Inhibitors of Δ24(25)-Sterol Methyl Transferase on the Ultrastructure of Epimastigotes of Trypanosoma cruzi. Microscopy and Microanalysis, 2005, 11, 506-515.	0.4	25

IAN H GILBERT

#	Article	IF	CITATIONS
109	Crystal structures of a bacterial 6â€phosphogluconate dehydrogenase reveal aspects of specificity, mechanism and mode of inhibition by analogues of highâ€energy reaction intermediates. FEBS Journal, 2007, 274, 275-286.	4.7	25
110	Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2016, 10, e0004540.	3.0	25
111	Scaffold-Hopping Strategy on a Series of Proteasome Inhibitors Led to a Preclinical Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2021, 64, 5905-5930.	6.4	25
112	β-Branched acyclic nucleoside analogues as inhibitors of Plasmodium falciparum dUTPase. Bioorganic and Medicinal Chemistry, 2011, 19, 2378-2391.	3.0	24
113	Thiolactomycin analogues as potential anti-Toxoplasma gondii agents. Parasitology International, 2009, 58, 411-415.	1.3	23
114	The Q _i Site of Cytochrome <i>b</i> is a Promiscuous Drug Target in <i>Trypanosoma cruzi</i> and <i>Leishmania donovani</i> . ACS Infectious Diseases, 2020, 6, 515-528.	3.8	23
115	Synthesis of protected myo-inositols. Tetrahedron Letters, 1990, 31, 2633-2634.	1.4	22
116	Water-soluble polymer–drug conjugates for combination chemotherapy against visceral leishmaniasis. Bioorganic and Medicinal Chemistry, 2010, 18, 2559-2565.	3.0	22
117	Exploring new inhibitors of Plasmodium falciparum purine nucleoside phosphorylase. European Journal of Medicinal Chemistry, 2010, 45, 5140-5149.	5.5	22
118	Chemical Validation of Methionyl-tRNA Synthetase as a Druggable Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2017, 3, 718-727.	3.8	22
119	The design and synthesis of nucleoside triphosphate isosteres as potential inhibitors of HIV reverse transcriptase. Tetrahedron, 1997, 53, 5537-5562.	1.9	20
120	SAR studies on azasterols as potential anti-trypanosomal and anti-leishmanial agents. Bioorganic and Medicinal Chemistry, 2009, 17, 5950-5961.	3.0	20
121	Development of Smallâ€Molecule <i>Trypanosoma brucei N</i> â€Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode. ChemMedChem, 2015, 10, 1821-1836.	3.2	20
122	Amide bond replacements : incorporation of a 2,5,5-trisubstituted imidazoline into dipeptides and into a CCK-4 derivative Tetrahedron Letters, 1991, 32, 2277-2280.	1.4	19
123	A QSAR study investigating the effect of l-alanine ester variation on the anti-HIV activity of some phosphoramidate derivatives of d4T. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2075-2078.	2.2	18
124	Design, synthesis and evaluation of novel uracil amino acid conjugates for the inhibition of Trypanosoma cruzi dUTPase. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3809-3812.	2.2	18
125	Potential application of thymidylate kinase in nucleoside analogue activation in Plasmodium falciparum. Bioorganic and Medicinal Chemistry, 2010, 18, 7302-7309.	3.0	18
126	Modified 5′â€Trityl Nucleosides as Inhibitors of <i>Plasmodium falciparum</i> dUTPase. ChemMedChem, 2011, 6, 309-320.	3.2	18

#	Article	IF	CITATIONS
127	Synthesis of a homochiral α,α-disubstituted α,β-diamino-acid. Tetrahedron: Asymmetry, 1994, 5, 1661-1664.	1.8	17
128	Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis. Annals of Clinical Microbiology and Antimicrobials, 2011, 10, 3.	3.8	17
129	Quinol derivatives as potential trypanocidal agents. Bioorganic and Medicinal Chemistry, 2012, 20, 1607-1615.	3.0	17
130	Setting Our Sights on Infectious Diseases. ACS Infectious Diseases, 2020, 6, 3-13.	3.8	17
131	Synthesis and Testing of 5-Benzyl-2,4-diaminopyrimidines as Potential Inhibitors of Leishmanial and Trypanosomal Dihydrofolate Reductase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 293-302.	5.2	16
132	Mechanistic Insights into the Cure of Prion Disease by Novel Antiprion Compounds. Journal of Virology, 2007, 81, 10729-10741.	3.4	16
133	Application of a novel regulatable Cre recombinase system to define the role of liver and gut metabolism in drug oral bioavailability. Biochemical Journal, 2015, 465, 479-488.	3.7	16
134	Discovery and optimisation studies of antimalarial phenotypic hits. European Journal of Medicinal Chemistry, 2015, 103, 530-538.	5.5	16
135	Design, synthesis and evaluation of peptide libraries as potential anti-HIV compounds, via inhibition of gp120/cell membrane interactions, using the gp120/cd4/fab17 crystal structure. European Journal of Medicinal Chemistry, 2002, 37, 883-890.	5.5	15
136	Evaluation of three novel azasterols against Toxoplasma gondii. Veterinary Parasitology, 2011, 177, 157-161.	1.8	15
137	Discovery of Inhibitors of <i>Trypanosoma brucei</i> by Phenotypic Screening of a Focused Protein Kinase Library. ChemMedChem, 2015, 10, 1809-1820.	3.2	15
138	Azasterols impair Giardia lamblia proliferation and induces encystation. Biochemical and Biophysical Research Communications, 2007, 363, 310-316.	2.1	14
139	Selective delivery of 2-hydroxy APA to Trypanosoma brucei using the melamine motif. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4364-4366.	2.2	14
140	Design and Synthesis of Brain Penetrant Trypanocidal <i>N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 9790-9806.	6.4	14
141	Selective inhibition of 6-phosphogluconate dehydrogenase from Trypanosoma brucei. Journal of Computer-Aided Molecular Design, 2001, 15, 465-475.	2.9	13
142	Solid-Phase synthesis of diamine and polyamine amino acid derivatives as HIV-1 tat-TAR binding inhibitors. Bioorganic and Medicinal Chemistry, 2003, 11, 87-94.	3.0	13
143	Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials. Journal of Medicinal Chemistry, 2016, 59, 6101-6120.	6.4	13
144	Rapid and sensitive quantitation of antibiotics in fermentations by electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 2001, 15, 1229-1238.	1.5	12

#	Article	IF	CITATIONS
145	Investigation of copper(II) tetrafluoroborate catalysed epoxide opening. Tetrahedron Letters, 2011, 52, 7091-7094.	1.4	12
146	Screening a protein kinase inhibitor library against Plasmodium falciparum. Malaria Journal, 2017, 16, 446.	2.3	12
147	Antitrypanosomal 8-Hydroxy-Naphthyridines Are Chelators of Divalent Transition Metals. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	12
148	Interaction of Monobenzamidine-Linked Trypanocides with the Trypanosoma brucei P2 Aminopurine Transporter. Antimicrobial Agents and Chemotherapy, 2005, 49, 5169-5171.	3.2	11
149	Fragment screening reveals salicylic hydroxamic acid as an inhibitor of Trypanosoma brucei GPI GlcNAc-PI de-N-acetylase. Carbohydrate Research, 2014, 387, 54-58.	2.3	11
150	Discovery of an Allosteric Binding Site in Kinetoplastid Methionyl-tRNA Synthetase. ACS Infectious Diseases, 2020, 6, 1044-1057.	3.8	11
151	Multiple unbiased approaches identify oxidosqualene cyclase as the molecular target of a promising anti-leishmanial. Cell Chemical Biology, 2021, 28, 711-721.e8.	5.2	11
152	Identification of a Proteasome-Targeting Arylsulfonamide with Potential for the Treatment of Chagas' Disease. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0153521.	3.2	11
153	Isosteres of nucleoside triphosphates. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2405-2410. Synthesis of (R)-2-methyl-4-deoxy and (R)-2-methyl-4,5-dideoxy analogues of 6-phosphogluconate as	2.2	10
154	potential inhibitors of 6-phosphogluconate dehydrogenaseElectronic supplementary information (ESI) available: experimental procedure and spectroscopic data (1H NMR, 13C NMR, DEPT) for compounds 2, 12, 13, 14, 15 and 21b and the previous synthetic approach tried for the synthesis of (2R)-2-methyl-4,5-dideoxy analogues. See http://www.rsc.org/suppdata/ob/b2/b210606j/. Organic and	2.8	10
155	Biomolecular Chemistry, 2003, I, 552-559. Design, synthesis and evaluation of potential inhibitors of HIV gp120–CD4 interactions. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2673-2676.	2.2	10
156	High-Throughput Screening Platform To Identify Inhibitors of Protein Synthesis with Potential for the Treatment of Malaria. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	10
157	Lipophilic bioisosteres of nucleoside triphosphates. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2411-2416.	2.2	9
158	Site-directed mutagenesis provides insights into the selective binding of trityl derivatives to Plasmodium falciparum dUTPase. European Journal of Medicinal Chemistry, 2011, 46, 3309-3314.	5.5	9
159	Kinetic properties and inhibition of the dimeric dUTPase-dUDPase from <i>Campylobacter jejuni</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 111-116.	5.2	8
160	Identification and Optimization of a Series of 8-Hydroxy Naphthyridines with Potent In Vitro Antileishmanial Activity: Initial SAR and Assessment of In Vivo Activity. Journal of Medicinal Chemistry, 2020, 63, 9523-9539.	6.4	8
161	Discovery and Optimization of a Compound Series Active against <i>Trypanosoma cruzi</i> , the Causative Agent of Chagas Disease. Journal of Medicinal Chemistry, 2020, 63, 3066-3089.	6.4	8
162	Ligand binding: evaluating the contribution of the water molecules network using the Fragment Molecular Orbital method. Journal of Computer-Aided Molecular Design, 2021, 35, 1025-1036.	2.9	8

#	Article	IF	CITATIONS
163	Repositioning of a Diaminothiazole Series Confirmed to Target the Cyclin-Dependent Kinase CRK12 for Use in the Treatment of African Animal Trypanosomiasis. Journal of Medicinal Chemistry, 2022, 65, 5606-5624.	6.4	8
164	Design and preparation of sterol mimetics as potential antiparasitics. Bioorganic and Medicinal Chemistry, 2010, 18, 7291-7301.	3.0	7
165	Optimisation of the Antiâ€ <i>Trypanosoma brucei</i> Activity of the Opioid Agonist U50488. ChemMedChem, 2011, 6, 1832-1840.	3.2	7
166	Validation of Plasmodium falciparum dUTPase as the target of 5′-tritylated deoxyuridine analogues with anti-malarial activity. Malaria Journal, 2019, 18, 392.	2.3	7
167	Exhaustive sampling of the fragment space associated to a molecule leading to the generation of conserved fragments. Chemical Biology and Drug Design, 2018, 91, 655-667.	3.2	7
168	Inhibitors of Trypanosoma brucei 6-Phosphogluconate Dehydrogenase. Current Bioactive Compounds, 2007, 3, 161-169.	0.5	6
169	Probing the substrate specificity of <i>Trypanosoma brucei</i> GlcNAc-PI de- <i>N</i> -acetylase with synthetic substrate analogues. Organic and Biomolecular Chemistry, 2014, 12, 1919-1934.	2.8	6
170	Identification of inhibitors of an unconventional Trypanosoma brucei kinetochore kinase. PLoS ONE, 2019, 14, e0217828.	2.5	6
171	Compounds enhancing human sperm motility identified using a high-throughput phenotypic screening platform. Human Reproduction, 2022, 37, 466-475.	0.9	6
172	Investigation of acyclic uridine amide and 5′-amido nucleoside analogues as potential inhibitors of the Plasmodium falciparum dUTPase. Bioorganic and Medicinal Chemistry, 2013, 21, 5876-5885.	3.0	5
173	2,4-Diamino-6-methylpyrimidines for the potential treatment of Chagas' disease. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3025-3030.	2.2	5
174	Substituted Aminoacetamides as Novel Leads for Malaria Treatment. ChemMedChem, 2019, 14, 1329-1335.	3.2	5
175	Design and synthesis of bio-isosteres of thymidine triphosphate. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1211-1214.	2.2	4
176	Synthesis and testing of peptides for anti-prion activity. European Journal of Medicinal Chemistry, 2008, 43, 2418-2427.	5.5	4
177	High-throughput phenotypic screening of the human spermatozoon. Reproduction, 2022, 163, R1-R9.	2.6	3
178	Electrospray Mass Spectrometry for Assay of Erythromycin A Extracted From Fermentation Liquor. Biotechnology Letters, 1998, 12, 435-438.	0.5	2
179	Characterization of a Melamino Nitroheterocycle as a Potential Lead for the Treatment of Human African Trypanosomiasis. Antimicrobial Agents and Chemotherapy, 2014, 58, 5747-5757.	3.2	2
180	Optimisation of a key cross-coupling reaction towards the synthesis of a promising antileishmanial compound. Tetrahedron Letters, 2019, 60, 1243-1247.	1.4	2

#	Article	IF	CITATIONS
181	Small Polar Hits against <i>S. aureus</i> : Screening, Initial Hit Optimization, and Metabolomic Studies. ACS Omega, 2019, 4, 19199-19215.	3.5	2
182	Identification of 6-amino-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidines with <i>in vivo</i> efficacy against visceral leishmaniasis. RSC Medicinal Chemistry, 2020, 11, 1168-1177.	3.9	2
183	Synthesis of a Series of Diaminoindoles. Journal of Organic Chemistry, 2021, 86, 11333-11340.	3.2	2
184	Erratum for De Rycker et al., Comparison of a High-Throughput High-Content Intracellular Leishmania donovani Assay with an Axenic Amastigote Assay. Antimicrobial Agents and Chemotherapy, 2014, 58, 7622-7622.	3.2	1
185	Development of Chemical Proteomics for the Folateome and Analysis of the Kinetoplastid Folateome. ACS Infectious Diseases, 2018, 4, 1475-1486.	3.8	1
186	A platform for target prediction of phenotypic screening hit molecules. Journal of Molecular Graphics and Modelling, 2020, 95, 107485.	2.4	1
187	<i>Mycobacterium tuberculosis</i> Phe-tRNA synthetase: structural insights into tRNA recognition and aminoacylation. Nucleic Acids Research, 2021, 49, 5351-5368.	14.5	1
188	Synthesis of Potential Anti-HIV GP120 Inhibitors Using a Lysine Template. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 175-182.	5.2	0