
Suzanne N Haber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4902885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Insular/Orbital-Prelimbic Circuit That Prevents Persistent Avoidance in a Rodent Model of Compulsive Behavior. Biological Psychiatry, 2023, 93, 1000-1009.	1.3	4
2	Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology, 2022, 47, 20-40.	5.4	40
3	The prefrontal cortex. Neuropsychopharmacology, 2022, 47, 1-2.	5.4	1
4	Society of Biological Psychiatry's 2022 Meeting. Biological Psychiatry, 2022, 91, A11.	1.3	0
5	Post mortem mapping of connectional anatomy for the validation of diffusion MRI. NeuroImage, 2022, 256, 119146.	4.2	47
6	Anatomical and functional connectivity support the existence of a salience network node within the caudal ventrolateral prefrontal cortex. ELife, 2022, 11, .	6.0	22
7	Targeting Presupplementary Motor Area in OCD With tDCS and Continuous Theta Burst TMS. Biological Psychiatry, 2022, 91, S16.	1.3	0
8	Insights from the IronTract challenge: Optimal methods for mapping brain pathways from multi-shell diffusion MRI. NeuroImage, 2022, 257, 119327.	4.2	17
9	Four Deep Brain Stimulation Targets for Obsessive-Compulsive Disorder: Are They Different?. Biological Psychiatry, 2021, 90, 667-677.	1.3	65
10	Nonhuman primate meso-circuitry data: a translational tool to understand brain networks across species. Brain Structure and Function, 2021, 226, 1-11.	2.3	11
11	Modelling white matter in gyral blades as a continuous vector field. NeuroImage, 2021, 227, 117693.	4.2	15
12	A prefrontal network integrates preferences for advance information about uncertain rewards and punishments. Neuron, 2021, 109, 2339-2352.e5.	8.1	38
13	Connectomic Deep Brain Stimulation for Obsessive-Compulsive Disorder. Biological Psychiatry, 2021, 90, 678-688.	1.3	61
14	Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography. NeuroImage, 2021, 239, 118300.	4.2	51
15	Circuits, Networks, and Neuropsychiatric Disease: Transitioning From Anatomy to Imaging. Biological Psychiatry, 2020, 87, 318-327.	1.3	51
16	Functional Disruption of Cerebello-thalamo-cortical Networks in Obsessive-Compulsive Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 438-447.	1.5	19
17	Neural mechanisms of persistent avoidance in OCD: A novel avoidance devaluation study. NeuroImage: Clinical, 2020, 28, 102404.	2.7	10
18	Anterior Cingulate Cortex and the Control of Dynamic Behavior in Primates. Current Biology, 2020, 30, R1442-R1454.	3.9	49

#	Article	IF	CITATIONS
19	Transient aphasia induced by intermittent theta burst stimulation. Brain Stimulation, 2020, 13, 941-942.	1.6	1
20	Functional disruption in prefrontal-striatal network in obsessive-compulsive disorder. Psychiatry Research - Neuroimaging, 2020, 300, 111081.	1.8	18
21	Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Frontiers in Neurology, 2020, 11, 597451.	2.4	27
22	Corticostriatal Projections of Macaque Area 44. Cerebral Cortex Communications, 2020, 1, tgaa079.	1.6	8
23	Use of an Individual-Level Approach to Identify Cortical Connectivity Biomarkers in Obsessive-Compulsive Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 27-38.	1.5	32
24	Evolution of gamma knife capsulotomy for intractable obsessive-compulsive disorder. Molecular Psychiatry, 2019, 24, 218-240.	7.9	73
25	Holographic Reconstruction of Axonal Pathways in the Human Brain. Neuron, 2019, 104, 1056-1064.e3.	8.1	91
26	2. Prefrontal Cortex and Striatum Hubs: Integrating Information From Reward, Cognitive, and Motor Control Regions. Biological Psychiatry, 2019, 85, S1.	1.3	0
27	A neural network for information seeking. Nature Communications, 2019, 10, 5168.	12.8	81
28	A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control. ELife, 2019, 8, .	6.0	78
29	How do cortico-striatal projections impact on downstream pallidal circuitry?. Brain Structure and Function, 2018, 223, 2809-2821.	2.3	16
30	Functional Segmentation of the Anterior Limb of the Internal Capsule: Linking White Matter Abnormalities to Specific Connections. Journal of Neuroscience, 2018, 38, 2106-2117.	3.6	118
31	137. Location of Anterior Cingulate and Ventrolateral Prefrontal Cortical Hubs: Integration Between Emotional and Cognitive Functions. Biological Psychiatry, 2018, 83, S56.	1.3	1
32	The thalamus in drug addiction: from rodents to humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170028.	4.0	86
33	138. Biomarkers of Reward and Avoidance Neural Circuitry Abnormalities in Mood Disorders and OCD: Toward New Neural Targets for Neuromodulation Interventions. Biological Psychiatry, 2018, 83, S56.	1.3	0
34	Organization of the Anterior Limb of the Internal Capsule in the Rat. Journal of Neuroscience, 2017, 37, 2539-2554.	3.6	34
35	Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum. NeuroImage, 2017, 146, 821-832.	4.2	70
36	Combinatorial Inputs to the Ventral Striatum from the Temporal Cortex, Frontal Cortex, and Amygdala: Implications for Segmenting the Striatum. ENeuro, 2017, 4, ENEURO.0392-17.2017.	1.9	46

#	Article	IF	CITATIONS
37	Neurocircuitry Underlying OCD. , 2017, , .		2
38	Corticostriatal Circuitry. , 2016, , 1-21.		14
39	Perspective on basal ganglia connections as described by Nauta and Mehler in 1966: Where we were and how this paper effected where we are now. Brain Research, 2016, 1645, 4-7.	2.2	7
40	Circuit-Based Corticostriatal Homologies Between Rat and Primate. Biological Psychiatry, 2016, 80, 509-521.	1.3	265
41	Acute deep brain stimulation changes in regional cerebral blood flow in obsessive-compulsive disorder. Journal of Neurosurgery, 2016, 125, 1087-1093.	1.6	35
42	Corticostriatal Circuitry. , 2016, , 1721-1741.		19
43	Corticostriatal circuitry. Dialogues in Clinical Neuroscience, 2016, 18, 7-21.	3.7	614
44	Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. ELife, 2016, 5, .	6.0	91
45	A Cross Species Approach to Understanding DBS Modulation of Fear. Brain Stimulation, 2015, 8, 986-988.	1.6	2
46	Enhancement of Fear Extinction with Deep Brain Stimulation: Evidence for Medial Orbitofrontal Involvement. Neuropsychopharmacology, 2015, 40, 1726-1733.	5.4	39
47	Measuring macroscopic brain connections in vivo. Nature Neuroscience, 2015, 18, 1546-1555.	14.8	292
48	Frontal Cortical and Subcortical Projections Provide a Basis for Segmenting the Cingulum Bundle: Implications for Neuroimaging and Psychiatric Disorders. Journal of Neuroscience, 2014, 34, 10041-10054.	3.6	167
49	The place of dopamine in the cortico-basal ganglia circuit. Neuroscience, 2014, 282, 248-257.	2.3	266
50	Connectivity-Based Functional Analysis of Dopamine Release in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography. Cerebral Cortex, 2014, 24, 1165-1177.	2.9	276
51	Estimates of Projection Overlap and Zones of Convergence within Frontal-Striatal Circuits. Journal of Neuroscience, 2014, 34, 9497-9505.	3.6	140
52	The Neural Network Underlying Incentive-Based Learning: Implications for Interpreting Circuit Disruptions in Psychiatric Disorders. Neuron, 2014, 83, 1019-1039.	8.1	194
53	Meeting report: "Depression and Anxiety Spectrum disorders: from basic science to the clinic and back― Biology of Mood & Anxiety Disorders, 2013, 3, 6.	4.7	0
54	Improvements in Anorexia Symptoms After Deep Brain Stimulation for Intractable Obsessive-Compulsive Disorder. Biological Psychiatry, 2013, 73, e29-e31.	1.3	74

#	Article	IF	CITATIONS
55	Translational Research in OCD: Circuitry and Mechanisms. Neuropsychopharmacology, 2013, 38, 252-253.	5.4	43
56	Human and Monkey Ventral Prefrontal Fibers Use the Same Organizational Principles to Reach Their Targets: Tracing versus Tractography. Journal of Neuroscience, 2013, 33, 3190-3201.	3.6	185
57	The Organization of Prefrontal-Subthalamic Inputs in Primates Provides an Anatomical Substrate for Both Functional Specificity and Integration: Implications for Basal Ganglia Models and Deep Brain Stimulation. Journal of Neuroscience, 2013, 33, 4804-4814.	3.6	441
58	The Rat Prefrontostriatal System Analyzed in 3D: Evidence for Multiple Interacting Functional Units. Journal of Neuroscience, 2013, 33, 5718-5727.	3.6	128
59	The Basal Ganglia. , 2012, , 678-738.		29
60	Reversible Increase in Smoking After Withdrawal of Ventral Capsule/Ventral Striatum Deep Brain Stimulation in a Depressed Smoker. Journal of Addiction Medicine, 2012, 6, 94-95.	2.6	10
61	Neural Circuits Affected by Deep Brain Stimulation for the Treatment of Psychiatric Disorders. , 2012, , 11-20.		2
62	The Subcallosal Cingulate Gyrus in the Context of Major Depression. Biological Psychiatry, 2011, 69, 301-308.	1.3	404
63	Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behavioural Brain Research, 2011, 225, 348-357.	2.2	25
64	Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism. Neuron, 2011, 72, 370-384.	8.1	705
65	Rules Ventral Prefrontal Cortical Axons Use to Reach Their Targets: Implications for Diffusion Tensor Imaging Tractography and Deep Brain Stimulation for Psychiatric Illness. Journal of Neuroscience, 2011, 31, 10392-10402.	3.6	167
66	Harnessing neuroplasticity for clinical applications. Brain, 2011, 134, 1591-1609.	7.6	907
67	Positive reactions to tobacco predict relapse after cessation Journal of Abnormal Psychology, 2011, 120, 999-1005.	1.9	85
68	Stratum radiatum of CA2 is an additional target of the perforant path in humans and monkeys. NeuroReport, 2010, 21, 245-249.	1.2	18
69	A 3D multi-modal and multi-dimensional digital brain model as a framework for data sharing. Journal of Neuroscience Methods, 2010, 194, 56-63.	2.5	20
70	Neurocircuitry: A Window into the Networks Underlying Neuropsychiatric Disease. Neuropsychopharmacology, 2010, 35, 1-3.	5.4	56
71	Increased Synaptic Dopamine Function in Associative Regions of the Striatum in Schizophrenia. Archives of General Psychiatry, 2010, 67, 231.	12.3	468
72	Invasive Circuitry-Based Neurotherapeutics: Stereotactic Ablation and Deep Brain Stimulation for OCD. Neuropsychopharmacology, 2010, 35, 317-336.	5.4	310

#	Article	lF	CITATIONS
73	The Reward Circuit: Linking Primate Anatomy and Human Imaging. Neuropsychopharmacology, 2010, 35, 4-26.	5.4	2,972
74	Integrative Networks Across Basal Ganglia Circuits. Handbook of Behavioral Neuroscience, 2010, , 409-427.	0.7	17
75	Neurocircuitry Underlying the Effects of Deep Brain Stimulation. Psychiatric Annals, 2010, 40, 499-503.	0.1	0
76	Anatomy and connectivity of the reward circuit. , 2009, , 1-27.		9
77	Cognitive and limbic circuits that are affected by deep brain stimulation. Frontiers in Bioscience - Landmark, 2009, Volume, 1823.	3.0	26
78	A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale. PLoS Computational Biology, 2009, 5, e1000334.	3.2	242
79	Tectonigral projections in the primate: a pathway for preâ€attentive sensory input to midbrain dopaminergic neurons. European Journal of Neuroscience, 2009, 29, 575-587.	2.6	56
80	The cortico-basal ganglia integrative network: The role of the thalamus. Brain Research Bulletin, 2009, 78, 69-74.	3.0	580
81	Functional topography of the ventral striatum and anterior limb of the internal capsule determined by electrical stimulation of awake patients. Clinical Neurophysiology, 2009, 120, 1941-1948.	1.5	46
82	Cell proliferation in the striatum during postnatal development: preferential distribution in subregions of the ventral striatum. Brain Structure and Function, 2008, 213, 119-127.	2.3	9
83	Lennart Heimer: in memoriam (1930–2007). Brain Structure and Function, 2008, 213, 3-10.	2.3	2
84	Parallel and Integrative Processing Through the Basal Ganglia Reward Circuit: Lessons from Addiction. Biological Psychiatry, 2008, 64, 173-174.	1.3	37
85	Low-Pass Filter Properties of Basal Ganglia Cortical Muscle Loops in the Normal and MPTP Primate Model of Parkinsonism. Journal of Neuroscience, 2008, 28, 633-649.	3.6	76
86	Functional Anatomy and Physiology of the Basal Ganglia: Non-motor Functions. , 2008, , 33-62.		11
87	Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. European Journal of Neuroscience, 2007, 26, 2005-2024.	2.6	145
88	Prefrontal Cortical Projections to the Midbrain in Primates: Evidence for a Sparse Connection. Neuropsychopharmacology, 2006, 31, 1627-1636.	5.4	109
89	Dopamine Replacement Therapy Does Not Restore the Full Spectrum of Normal Pallidal Activity in the 1-Methyl-4-Phenyl-1,2,3,6-Tetra-Hydropyridine Primate Model of Parkinsonism. Journal of Neuroscience, 2006, 26, 8101-8114.	3.6	104
90	Reward-Related Cortical Inputs Define a Large Striatal Region in Primates That Interface with Associative Cortical Connections, Providing a Substrate for Incentive-Based Learning. Journal of Neuroscience, 2006, 26, 8368-8376.	3.6	622

ARTICLE IF CITATIONS A functional neuroimaging investigation of deep brain stimulation in patients with 234 obsessive–compulsive disorder. Journal of Neurosurgery, 2006, 104, 558-565. The Basal Ganglia., 2004, , 676-738. 92 30 Imaging Human Mesolimbic Dopamine Transmission with Positron Emission Tomography. Part II: 93 Amphetamine-Induced Dopamine Release in the Functional Subdivisions of the Striatum. Journal of 4.3 510 Cerebral Blood Flow and Metabolism, 2003, 23, 285-300. The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy, 2003, 94 2.1 1,370 26, 317-330. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience, 2002, 110, 2.3 257-275. Enhanced Synchrony among Primary Motor Cortex Neurons in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Primate Model of Parkinson's Disease. Journal of Neuroscience, 2002, 22, 4639-4653. 96 3.6 260 Thalamic Relay Nuclei of the Basal Ganglia Form Both Reciprocal and Nonreciprocal Cortical 3.6 413 Connections, Linking Multiple Frontal Cortical Areas. Journal of Neuroscience, 2002, 22, 8117-8132. Defining the Caudal Ventral Striatum in Primates: Cellular and Histochemical Features. Journal of 98 3.6 65 Neuroscience, 2002, 22, 10078-10082. Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in 2.3 68 primates. Neuroscience, 2001, 104, 807-827. 100 The Place of the Thalamus in Frontal Cortical-Basal Ganglia Circuits. Neuroscientist, 2001, 7, 315-324. 3.5 163 Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque. Journal of 94 1.6 Comparative Neurology, 2001, 429, 321-336. Convergent Inputs from Thalamic Motor Nuclei and Frontal Cortical Areas to the Dorsal Striatum in 102 3.6 213 the Primate. Journal of Neuroscience, 2000, 20, 3798-3813. Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the 3.6 1,753 Dorsolateral Striatum. Journal of Neuroscience, 2000, 20, 2369-2382. Striatal Responses to Partial Dopaminergic Lesion: Evidence for Compensatory Sprouting, Journal of 104 3.6 148 Neuroscience, 2000, 20, 5102-5114. The Concept of the Ventral Striatum in Nonhuman Primates. Annals of the New York Academy of 3.8 210 Sciences, 1999, 877, 33-48. Considering the Role of the Amygdala in Psychotic Illness. Journal of Neuropsychiatry and Clinical 106 1.8 24 Neurosciences, 1998, 10, 383-394. Dopamine Neurons Make Glutamatergic Synapses <i>In Vitro </i>. Journal of Neuroscience, 1998, 18, 3.6 316 4588-4602. Insular Cortical Projections to Functional Regions of the Striatum Correlate with Cortical 108 3.6

303

Cytoarchitectonic Organization in the Primate. Journal of Neuroscience, 1997, 17, 9686-9705.

#	Article	IF	CITATIONS
109	Descending efferent connections of the sub-pallidal areas in the cat: projections to the lateral habenula. NeuroReport, 1995, 6, 977-980.	1.2	1
110	Organization of thalamic projections to the ventral striatum in the primate. Journal of Comparative Neurology, 1995, 354, 127-149.	1.6	125
111	Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input. Journal of Comparative Neurology, 1994, 350, 337-356.	1.6	289
112	Integrative Aspects of Basal Ganglia Circuitry. Advances in Behavioral Biology, 1994, , 71-80.	0.2	28
113	Myosin light chain kinase is expressed in neurons and glia: immunoblotiing and immunocytochemical studies. Molecular Brain Research, 1992, 14, 27-34.	2.3	30
114	In situ hybridization histochemistry: a new method for processing material stored for several years. Brain Research, 1992, 578, 155-160.	2.2	48
115	Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. Developmental Brain Research, 1990, 57, 93-102.	1.7	118
116	Tracing intrinsic fiber connections in postmortem human brain with WGA-HRP. Journal of Neuroscience Methods, 1988, 23, 15-22.	2.5	28
117	Chapter 25 Transplantation of fetal dopamine neurons in primate brain reverses MPTP induced parkinsonism. Progress in Brain Research, 1987, 71, 309-323.	1.4	41
118	Survival and growth of fetal catecholamine neurons transplanted into primate brain. Brain Research Bulletin, 1986, 17, 809-818.	3.0	119
119	Gilles de la Tourette's syndrome. Journal of the Neurological Sciences, 1986, 75, 225-241.	0.6	166
120	Late changes in cerebral monoamine metabolism following focal ventrolateral cerebrocortical lesions in rats. Brain Research, 1985, 344, 205-210.	2.2	16
121	Proopiomelanocortin peptide immunocytochemistry in rhesus monkey brain. Brain Research Bulletin, 1984, 13, 785-800.	3.0	71
122	The distribution of enkephalin immunoreactive neuronal cell bodies in the monkey brain: Preliminary observations. Neuroscience Letters, 1982, 32, 247-252.	2.1	35
123	Interspecies conservation and variation in peptidergic neurons. Peptides, 1980, 1, 21-26.	2.4	17
124	Naloxone blocks amphetamine-induced rearing: Potential interaction between catecholamines and endorphins. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 1978, 2, 425-430.	0.6	29