
Tomoyuki Miyamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4902036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal Annealing of GalnNAs/GaAs Quantum Wells Grown by Chemical Beam Epitaxy and Its Effect on Photoluminescence. Japanese Journal of Applied Physics, 1999, 38, L298-L300.	1.5	83
2	Chemical beam epitaxy of GaInNAs/GaAs quantum wells and its optical absorption property. Journal of Crystal Growth, 1999, 197, 67-72.	1.5	41
3	Design and experimental characterization of optical wireless power transmission using GaAs solar cell and series-connected high-power vertical cavity surface emitting laser array. Japanese Journal of Applied Physics, 2018, 57, 08PD01.	1.5	25
4	200 mW-class LED-based optical wireless power transmission for compact IoT. Japanese Journal of Applied Physics, 2019, 58, SJJC04.	1.5	21
5	GaNAs/GaInAs short-period superlattice quantum well structures grown by MOCVD using TBAs and DMHy. Journal of Crystal Growth, 1998, 195, 421-426.	1.5	15
6	Numerical analysis of power generation characteristics in beam irradiation control of indoor OWPT system. Optical Review, 2020, 27, 170-176.	2.0	12
7	Theoretical design of carrier injection rate and recombination rate in tunnel injection quantum well lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2838-2840.	0.8	11
8	Design, simulation and characterization of fly-eye lens system for optical wireless power transmission. Japanese Journal of Applied Physics, 2019, 58, SJJE02.	1.5	11
9	Nitrogen Composition and Growth Temperature Dependence of Growth Characteristics for Self-Assembled GaInNAs/GaAs Quantum Dots by Chemical Beam Epitaxy. Japanese Journal of Applied Physics, 2002, 41, 953-957.	1.5	10
10	400 mW class high output power from LED-array optical wireless power transmission system for compact IoT. IEICE Electronics Express, 2021, 18, 20200405-20200405.	0.8	10
11	Rate equation-based numerical analysis of mutual injection for phase locked 2D-VCSEL array using Talbot effect. Japanese Journal of Applied Physics, 2019, 58, SJJC01.	1.5	6
12	Thermal annealing effect on self-assembled GalnNAs/GaAs quantum dots grown by chemical beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1097-1100.	0.8	4
13	Effect of Quantum Well Width Reduction for GalnNAs/GaAs Lasers. Optical Review, 2002, 9, 231-233.	2.0	3
14	Optical wireless power transmission characteristics of surface appearance controlled solar cells using visible colour filters. Journal of Engineering, 2021, 2021, 19-24.	1.1	1
15	Proton implantation in just above active region for improvement of power conversion efficiency of VCSELs. Electronics Letters, 2021, 57, 587-588.	1.0	1
16	Large Kink Characteristics in Light Output of Tunnel Injection Quantum Well Lasers. Japanese Journal of Applied Physics, 2011, 50, 080205.	1.5	1
17	Recent Progress and Hot Technologies of Vertical-Cavity Surface Emitting Lasers. The Review of Laser Engineering, 2009, 37, 649-656.	0.0	0
18	Well-in-Well Structure for High-Speed Carrier Relaxation into Quantum Wells. Japanese Journal of Applied Physics, 2011, 50, 080209.	1.5	0

#	Article	IF	CITATIONS
19	Large Kink Characteristics in Light Output of Tunnel Injection Quantum Well Lasers. Japanese Journal of Applied Physics, 2011, 50, 080205.	1.5	0
20	Control of carrier reserving and injection for high-speed semiconductor optical amplifier by using a tunnel injection structure. Japanese Journal of Applied Physics, 2015, 54, 010303.	1.5	0
21	Well-in-Well Structure for High-Speed Carrier Relaxation into Quantum Wells. Japanese Journal of Applied Physics, 2011, 50, 080209.	1.5	0