J A GarcÃ-a-SÃ;inz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4901868/publications.pdf

Version: 2024-02-01

238 papers 5,634 citations

39 h-index 62 g-index

239 all docs

239 docs citations

times ranked

239

2060 citing authors

#	Article	IF	CITATIONS
1	Role of phosphatidylinositol turnover in alpha1 and of adenylate cyclase inhibition in alpha2 effects of catecholamines. Life Sciences, 1980, 26, 1183-1194.	4.3	292
2	Adrenergic regulation of adipocyte metabolism Journal of Lipid Research, 1983, 24, 945-966.	4.2	225
3	Adrenergic regulation of adipocyte metabolism. Journal of Lipid Research, 1983, 24, 945-66.	4.2	167
4	α1-Adrenoceptors: function and phosphorylation. European Journal of Pharmacology, 2000, 389, 1-12.	3.5	119
5	Phorbol esters inhibit alpha1 adrenergic stimulation of glycogenolysis in isolated rat hepatocytes. Biochemical and Biophysical Research Communications, 1984, 119, 1128-1133.	2.1	115
6	Effect of insulin, catecholamines and calcium ions on phospholipid metabolism in isolated white fat-cells. Biochemical Journal, 1980, 186, 781-789.	3.7	109
7	Effects of pertussis toxin treatment on the metabolism of rat adipocytes Journal of Biological Chemistry, 1983, 258, 10938-10943.	3.4	106
8	Phorbol esters inhibit alpha 1-adrenergic effects and decrease the affinity of liver cell alpha 1-adrenergic receptors for (-)-epinephrine Journal of Biological Chemistry, 1986, 261, 520-526.	3.4	100
9	Pharmacological Characterizations of Adrenergic Receptors in Human Adipocytes. Journal of Clinical Investigation, 1981, 67, 467-475.	8.2	100
10	Phorbol esters inhibit alpha 1-adrenergic effects and decrease the affinity of liver cell alpha 1-adrenergic receptors for (-)-epinephrine. Journal of Biological Chemistry, 1986, 261, 520-6.	3.4	92
11	α1-Adrenoceptors. Archives of Medical Research, 1999, 30, 449-458.	3.3	91
12	Role of alpha1 adrenoceptors in the turnover of phosphatidylinositol and of alpha2 adrenoceptors in the regulation of cyclic AMP accumulation in hamster adipocytes. Life Sciences, 1980, 27, 953-961.	4.3	86
13	G protein-coupled receptor cross-talk: pivotal roles of protein phosphorylation and protein?protein interactions. Cellular Signalling, 2003, 15, 549-557.	3.6	80
14	Differential effect of pertussis toxin on the affinity state for agonists of renal alpha 1- and alpha 2-adrenoceptors Journal of Biological Chemistry, 1984, 259, 8076-8079.	3.4	79
15	Effects of pertussis toxin treatment on the metabolism of rat adipocytes. Journal of Biological Chemistry, 1983, 258, 10938-43.	3.4	77
16	Agonist-Induced Interactions between Angiotensin AT1 and Epidermal Growth Factor Receptors. Molecular Pharmacology, 2005, 68, 356-364.	2.3	72
17	Activation of Endothelin ETA Receptors Induces Phosphorylation of $\hat{l}\pm 1b$ -Adrenoreceptors in Rat-1 Fibroblasts. Journal of Biological Chemistry, 1997, 272, 27330-27337.	3.4	61
18	Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cellular Signalling, 2020, 72, 109636.	3.6	59

#	Article	IF	Citations
19	Effects of phorbol esters on $\hat{l}\pm 1$ -adrenergic-mediated and glucagon-mediated actions in isolated rat hepatocytes. Biochemical Journal, 1985, 228, 277-280.	3.7	58
20	Norepinephrine- and Phorbol Ester-induced Phosphorylation of $\hat{l}\pm 1$ a-Adrenergic Receptors. Journal of Biological Chemistry, 2000, 275, 6553-6559.	3.4	56
21	Metabolic effects and cyclic AMP levels produced by glucagon, (1-Nα-trinitrophenylhistidine,12-homoarginine)glucagon and forskolin in isolated rat hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1984, 804, 434-441.	4.1	53
22	Angiotensin II stimulates phosphoinositide turnover and phosphorylase through AII-1 receptors in isolated rat hepatocytes. Biochemical and Biophysical Research Communications, 1990, 172, 780-785.	2.1	53
23	Species heterogeneity of hepatic $\hat{l}\pm 1$ -adrenoceptors: $\hat{l}\pm 1$ A-, $\hat{l}\pm 1$ B- and $\hat{l}\pm 1$ C-subtypes. Biochemical and Biophysical Research Communications, 1992, 186, 760-767.	2.1	53
24	Correlation between phosphatidylinositol labeling and contraction in rabbit aorta: effect of alpha-1 adrenergic activation. Journal of Pharmacology and Experimental Therapeutics, 1982, 222, 258-61.	2.5	53
25	Roles of alpha1- and beta-adrenergic receptors in adrenergic responsiveness of liver cells formed after partial hepatectomy. Biochimica Et Biophysica Acta - Molecular Cell Research, 1983, 763, 112-119.	4.1	52
26	Differential effect of pertussis toxin on the affinity state for agonists of renal alpha 1- and alpha 2-adrenoceptors. Journal of Biological Chemistry, 1984, 259, 8076-9.	3.4	52
27	Decreased sensitivity to $\hat{l}\pm 2$ adrenergic amines, adenosine and prostaglandins in white fat cells from hamsters treated with pertussis vaccine. FEBS Letters, 1981, 126, 306-308.	2.8	50
28	Modulation of basal intracellular calcium by inverse agonists and phorbol myristate acetate in rat-1 fibroblasts stably expressing $\hat{l}\pm 1d$ -adrenoceptors. FEBS Letters, 1999, 443, 277-281.	2.8	50
29	Updates in the function and regulation of α ₁ â€adrenoceptors. British Journal of Pharmacology, 2019, 176, 2343-2357.	5.4	49
30	Pertussis toxin catalyzes the ADP-ribosylation of two distinct peptides, 40 and 41 kDa, in rat fat cell membranes. FEBS Letters, 1984, 176, 301-306.	2.8	48
31	Pertussis toxin induces tachycardia and impairs the increase in blood pressure produced by alpha2-adrenergic agonists. Life Sciences, 1983, 33, 2627-2633.	4.3	47
32	Phosphorylation and desensitization of $\hat{l}\pm 1d$ -adrenergic receptors. Biochemical Journal, 2001, 353, 603-610.	3.7	47
33	Differential Phosphorylation, Desensitization, and Internalization of $\hat{l}\pm 1$ Aâ^'Adrenoceptors Activated by Norepinephrine and Oxymetazoline. Molecular Pharmacology, 2013, 83, 870-881.	2.3	47
34	Hormonal stimulation of mitochondrial glutaminase. Effects of vasopressin, angiotensin II, adrenaline and glucagon. Biochemical Journal, 1983, 210, 957-960.	3.7	45
35	Possible involvement of cyclooxygenase products in the actions of platelet-activating factor and of lipoxygenase products in the vascular effects of epinephrine in perfused rat liver. Biochemical and Biophysical Research Communications, 1984, 123, 507-514.	2.1	45
36	Phosphorylation and desensitization of the lysophosphatidic acid receptor LPA1. Biochemical Journal, 2005, 385, 677-684.	3.7	44

#	Article	IF	CITATIONS
37	Rat fat-cells have three types of adenosine receptors (Ra, Ri and P). Differential effects of pertussis toxin. Biochemical Journal, 1985, 232, 439-443.	3.7	43
38	$\hat{l}\pm 1$ -adrenergic action: Receptor subtypes, signal transduction and regulation. Cellular Signalling, 1993, 5, 539-547.	3.6	41
39	On the mechanism of ethanol-induced fatty liver and its reversibility by adenosine. Archives of Biochemistry and Biophysics, 1978, 190, 155-162.	3.0	40
40	Pertussis toxin blocks the action of morphine, norepinephrine and clonidine on isolated guinea-pig ileum. European Journal of Pharmacology, 1984, 100, 377-380.	3.5	39
41	Effects of adenosine on liver cell damage induced by carbon tetrachloride. Biochemical Pharmacology, 1984, 33, 2599-2604.	4.4	37
42	The elusive $\hat{l}\pm 1D$ -adrenoceptor: molecular and cellular characteristics and integrative roles. European Journal of Pharmacology, 2004, 500, 113-120.	3.5	37
43	Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in alpha 1-adrenergic action Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 6727-6730.	7.1	36
44	Angiotensin AT ₁ Receptor Phosphorylation and Desensitization in a Hepatic Cell Line. Roles of Protein Kinase C and Phosphoinositide 3-Kinase. Molecular Pharmacology, 2001, 59, 576-585.	2.3	36
45	Cross-talk between receptors with intrinsic tyrosine kinase activity and $\hat{l}\pm 1b$ -adrenoceptors. Biochemical Journal, 2000, 350, 413-419.	3.7	35
46	Alpha1-adrenergic activation of phosphatidylinositol labeling in isolated brown fat cells. Biochemical Pharmacology, 1980, 29, 3330-3333.	4.4	34
47	Stimulation of hepatic glycogenolysis by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) via cyclooxygenase products. Biochemical and Biophysical Research Communications, 1985, 132, 204-209.	2.1	34
48	Effect of phorbol myristate acetate on alpha 1-adrenergic action in cells expressing recombinant alpha 1-adrenoceptor subtypes. Molecular Pharmacology, 1996, 50, 17-22.	2.3	34
49	Vasopressin and angiotensin II stimulate ureogenesis through increased mitochondrial citrulline production Life Sciences, 1982, 31, 2493-2498.	4.3	33
50	Pertussis toxin effects on adenylate cyclase activity, cyclic AMP accumulation and lipolysis in adipocytes from hypothyroid, euthyroid and hyperthyroid rats. Lipids and Lipid Metabolism, 1986, 876, 619-630.	2.6	32
51	Hepatocyte beta-adrenergic responsiveness and guanine nucleotide-binding regulatory proteins. American Journal of Physiology - Cell Physiology, 1989, 256, C384-C389.	4.6	32
52	Pertussis toxin prevents homologous desensitization of adenylate cyclase in cultured renal epithelial cells Journal of Biological Chemistry, 1986, 261, 1503-1506.	3.4	32
53	Phosphorylation and desensitization of $\hat{l}\pm 1$ d-adrenergic receptors. Biochemical Journal, 2001, 353, 603.	3.7	31
54	Effect of pertussis toxin on the hormonal regulation of cyclic AMP levels in hamster fat cells. Biochimica Et Biophysica Acta - General Subjects, 1983, 760, 215-220.	2.4	29

#	Article	IF	CITATIONS
55	Characterization of the human liver $\hat{l}\pm 1$ -adrenoceptors: predominance of the $\hat{l}\pm 1A$ subtype. European Journal of Pharmacology, 1995, 289, 81-86.	2.6	29
56	Lysophosphatidic acid induces \$alpha;1B-adrenergic receptor phosphorylation through G\$beta;\$gamma;, phosphoinositide 3-kinase, protein kinase C and epidermal growth factor receptor transactivation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1633, 75-83.	2.4	29
57	Angiotensin II inhibits the accumulation of cyclic AMP produced by glucagon but not its metabolic effects. FEBS Letters, 1982, 143, 1-4.	2.8	28
58	Modulation by thyroid status of cyclic AMP-dependent and Ca2+-dependent mechanisms of hormone action in rat liver cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1984, 803, 95-105.	4.1	28
59	Guanine nucleotide-induced positive cooperativity in muscarinic-cholinergic antagonist binding. Biochemical and Biophysical Research Communications, 1986, 134, 172-177.	2.1	28
60	Crosstalk: phosphorylation of $\hat{l}\pm 1b$ -adrenoceptors induced through activation of bradykinin B2 receptors. FEBS Letters, 1998, 422, 141-145.	2.8	28
61	Hypothyroidism abolishes the glycogenolytic effect of vasopressin, angiotensin II and A23187 but not that of $\hat{l}\pm 1$ -adrenergic amines in rat hepatocytes. FEBS Letters, 1983, 153, 366-368.	2.8	27
62	Cross-talk between receptors with intrinsic tyrosine kinase activity and $\hat{l}\pm 1b$ -adrenoceptors. Biochemical Journal, 2000, 350, 413.	3.7	27
63	Free fatty acids and protein kinase C activation induce GPR120 (free fatty acid receptor 4) phosphorylation. European Journal of Pharmacology, 2014, 723, 368-374.	3.5	27
64	Pertussis toxin prevents homologous desensitization of adenylate cyclase in cultured renal epithelial cells. Journal of Biological Chemistry, 1986, 261, 1503-6.	3.4	27
65	$\hat{l}\pm 1$ -adrenoceptor activation stimulates ureogenesis in rat hepatocytes. European Journal of Pharmacology, 1981, 72, 387-390.	3.5	26
66	Differences in phorbol ester-induced decrease of the activity of protein kinase C isozymes in rat hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1094, 77-84.	4.1	26
67	Angiotensin II and active phorbol esters induce proto-oncogene expression in isolated rat hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1136, 309-314.	4.1	25
68	Regulation of adipose tissue metabolism by catecholamines: roles of alpha1, alpha2 and beta-adrenoceptors. Trends in Pharmacological Sciences, 1982, 3, 201-203.	8.7	24
69	Differential effects of adrenergic agonists and phorbol esters on the $\hat{l}\pm 1$ -adrenoceptors of hepatocytes and aorta. European Journal of Pharmacology, 1985, 112, 393-397.	3.5	23
70	Angiotensin II receptors: one type coupled to two signals or receptor subtypes?. Trends in Pharmacological Sciences, 1987, 8, 48-49.	8.7	23
71	α1-Adrenoceptor subtype selectivity of tamsulosin: Studies using livers from different species. European Journal of Pharmacology, 1995, 289, 1-7.	2.6	23
72	$\hat{l}\pm 1$ B-Adrenergic Receptors Differentially Associate with Rab Proteins during Homologous and Heterologous Desensitization. PLoS ONE, 2015, 10, e0121165.	2.5	23

#	Article	IF	CITATIONS
73	Phorbol esters and calcium-mobilizing hormones increase membrane-associated protein kinase C activity in rat hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 968, 138-141.	4.1	22
74	Activated protein kinase C binds to intracellular receptors in rat hepatocytes. Biochemical Journal, 1993, 296, 467-472.	3.7	22
75	Inhibition of hormone-stimulated inositol phosphate production and disruption of cytoskeletal structure. Effects of okadaic acid, microcystin, chlorpromazine, W7 and nystatin. Toxicon, 1994, 32, 105-112.	1.6	22
76	Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 117, 1-10.	2.2	22
77	Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H149-H163.	3.2	22
78	Effect of pertussis toxin on hormonal responsiveness of rat hepatocytes. FEBS Letters, 1983, 160, 198-202.	2.8	21
79	Protein phosphatase-protein kinase interplay modulates $\hat{l}\pm 1b$ -adrenoceptor phosphorylation: effects of okadaic acid. British Journal of Pharmacology, 2000, 129, 724-730.	5.4	21
80	Human $\hat{l}\pm 1D$ -adrenoceptor phosphorylation and desensitization. Biochemical Pharmacology, 2004, 67, 1853-1858.	4.4	21
81	Novel Structural Approaches to Study GPCR Regulation. International Journal of Molecular Sciences, 2017, 18, 27.	4.1	21
82	Effect of thyroid status on \hat{l}_{\pm} - and \hat{l}^2 -catecholamine responsiveness of hamster adipocytes. Biochimica Et Biophysica Acta - General Subjects, 1981, 678, 334-341.	2.4	19
83	Pertussis toxin reverses Gpp(NH)p inhibition of basal and forskolin activated adipocyte adenylate cyclase. Biochemical and Biophysical Research Communications, 1983, 116, 651-656.	2.1	19
84	H1-histaminergic activation stimulates phosphatidylinositol labeling in rabbit aorta. European Journal of Pharmacology, 1983, 90, 457-459.	3.5	19
85	Effect of pertussis toxin on $\hat{l}\pm 2$ -adrenoceptors: decreased formation of the high-affinity state for agonists. FEBS Letters, 1984, 172, 95-98.	2.8	19
86	Multiple species and isoforms of Bordetella pertussis toxin substrates. Biochemical and Biophysical Research Communications, 1988, 152, 1185-1192.	2.1	19
87	Effect of okadaic acid on hormone- and mastoparan-stimulated phosphoinositide turnover in isolated rat hepatocytes. Biochemical and Biophysical Research Communications, 1991, 179, 852-858.	2.1	19
88	$\hat{l}\pm 1$ -Adrenoceptor subtypes in aorta ($\hat{l}\pm 1$ A) and liver ($\hat{l}\pm 1$ B). European Journal of Pharmacology, 1991, 206, 199-202.	2.6	19
89	Cross-talk between glucagon- and adenosine-mediated signalling systems in rat hepatocytes: effects on cyclic AMP-phosphodiesterase activity. Biochemical Journal, 1995, 312, 763-767.	3.7	19
90	Characterization of the AT1 angiotensin II receptor expressed in guinea pig liver. Journal of Endocrinology, 1997, 154, 133-138.	2.6	19

#	Article	IF	Citations
91	Role of epidermal growth factor receptor transactivation in $\hat{l}\pm 1B$ -adrenoceptor phosphorylation. European Journal of Pharmacology, 2006, 542, 31-36.	3.5	19
92	Estrogens Cross-Talk to α1b-Adrenergic Receptors. Molecular Pharmacology, 2006, 70, 154-162.	2.3	19
93	Dissecting how receptor tyrosine kinases modulate G protein-coupled receptor function. European Journal of Pharmacology, 2010, 648, 1-5.	3.5	19
94	Alpha2 adrenergic amines, adenosine and prostaglandis inhibit lipolysis and cyclic AMP accumulation in hamster adipocytes in the absence of extracellular sodium Life Sciences, 1981, 28, 401-406.	4.3	18
95	Inhibitors of protein kinase C block the alpha1-adrenergic refractoriness induced by phorbol 12-myristate 13-acetate, vasopressin and angiotensin II. FEBS Journal, 1987, 163, 417-421.	0.2	18
96	Activation of protein kinase C alters the interaction of $\hat{l}\pm 2$ -adrenoceptors and the inhibitory GTP-binding protein (Gi) in human platelets. FEBS Letters, 1989, 257, 427-430.	2.8	18
97	$\hat{l}\pm 1$ -Adrenoceptor subtype activation increases proto-oncogene mRNA levels. Role of protein kinase C. European Journal of Pharmacology, 1998, 342, 311-317.	3.5	18
98	Effect of pertussis toxin on the adrenergic regulation of plasma renin activity. Life Sciences, 1984, 35, 1683-1689.	4.3	17
99	Adrenergic regulation of ureogenesis in hepatocytes from adrenalectomized rats. FEBS Letters, 1984, 166, 385-388.	2.8	17
100	Modulation of Gs activity by phorbol myristate acetate in rat hepatocytes. American Journal of Physiology - Cell Physiology, 1991, 260, C259-C265.	4.6	17
101	Insulin-Like Growth Factor-I Induces $\hat{l}\pm 1$ B-Adrenergic Receptor Phosphorylation through $\hat{G^2}^3$ and Epidermal Growth Factor Receptor Transactivation. Molecular Endocrinology, 2006, 20, 2773-2783.	3.7	17
102	Regulation of LPA receptor function by estrogens. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 253-262.	4.1	17
103	Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3. PLoS ONE, 2015, 10, e0140583.	2.5	17
104	S1P1 receptor phosphorylation, internalization, and interaction with Rab proteins: effects of sphingosine 1-phosphate, FTY720-P, phorbol esters, and paroxetine. Bioscience Reports, 2018, 38, .	2.4	17
105	Effect of adrenergic amines on phosphatidylinositol labeling and glycogen synthase activity in fat cells from euthyroid and hypothyroid rats. Molecular Pharmacology, 1980, 18, 72-7.	2.3	17
106	Alpha-Adrenergic Stimulation of Phosphatidylinositol Synthesis in Human Platelets as an Alpha-2 Effect Secondary to Platelet Aggregation. Journal of Cellular Biochemistry, 1982, 18, 213-220.	2.6	16
107	Mechanisms involved in α ₁₈ â€adrenoceptor desensitization. IUBMB Life, 2011, 63, 811-815.	3.4	16
108	Lysophosphatidic acid modulates alpha(1b)-adrenoceptor phosphorylation and function: roles of Gi and phosphoinositide 3-kinase. Molecular Pharmacology, 2000, 57, 1027-33.	2.3	16

#	Article	IF	CITATIONS
109	Sensitivity of liver cells formed after partial hepatectomy to glucagon, vasopressin and angiotensin II. Biochimica Et Biophysica Acta - Molecular Cell Research, 1983, 763, 120-124.	4.1	15
110	Characterization of the hepatic $\hat{l}\pm 1B$ -adrenoceptors of rats, mice and hamsters. Life Sciences, 1994, 54, 1995-2003.	4.3	15
111	Characterization of the $\hat{l}\pm 1B$ -Adrenoceptors of Catfish Hepatocytes: Functional and Binding Studies. General and Comparative Endocrinology, 1995, 97, 111-120.	1.8	15
112	Insulin induces $\hat{l}\pm 1B$ -adrenergic receptor phosphorylation and desensitization. Life Sciences, 2004, 75, 1937-1947.	4.3	15
113	EGF and angiotensin II modulate lysophosphatidic acid LPA1 receptor function and phosphorylation state. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 1170-1177.	2.4	15
114	Mechanism of the fatty liver induced by cycloheximide and its reversibility by adenosine. Biochemical Pharmacology, 1979, 28, 1409-1413.	4.4	14
115	Characterization of the $\hat{l}\pm 1$ -adrenoceptors of rat white fat cells. European Journal of Pharmacology, 1983, 87, 159-161.	3.5	14
116	Guinea pig hepatocyte $\hat{l}\pm 1$ A-adrenoceptors: characterization, signal transduction and regulation. European Journal of Pharmacology, 1992, 227, 239-245.	2.6	14
117	New Multi-target Antagonists of Â1A-, Â1D-Adrenoceptors and 5-HT1A Receptors Reduce Human Hyperplastic Prostate Cell Growth and the Increase of Intraurethral Pressure. Journal of Pharmacology and Experimental Therapeutics, 2015, 356, 212-222.	2.5	14
118	Protein Kinase C Activation Promotes $\hat{l}\pm <$ sub>1B-Adrenoceptor Internalization and Late Endosome Trafficking through Rab9 Interaction. Role in Heterologous Desensitization. Molecular Pharmacology, 2017, 91, 296-306.	2.3	14
119	Noradrenaline, oxymetazoline and phorbol myristate acetate induce distinct functional actions and phosphorylation patterns of $\hat{l}\pm 1$ A-adrenergic receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2378-2388.	4.1	14
120	Different phosphorylation patterns regulate $\hat{l}\pm 1D$ -adrenoceptor signaling and desensitization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 842-854.	4.1	14
121	Trifluoperazine and chlorpromazine antagonize alpha 1- but not alpha2- adrenergic effects. Molecular Pharmacology, 1983, 23, 67-70.	2.3	14
122	Cycloheximide: An adrenergic agent. Life Sciences, 1982, 30, 1757-1762.	4.3	13
123	Possible involvement of two mechanisms of signal transduction in $\hat{l}\pm 1$ -adrenergic action. Selective effect of cycloheximide. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 845, 131-137.	4.1	13
124	Intercellular communication within the liver has clinical implications. Trends in Pharmacological Sciences, 1989, 10, 10-11.	8.7	13
125	Characterization and detoxification of an easily prepared acellular pertussis vaccine. Antigenic role of the A protomer of pertussis toxin. Vaccine, 1992, 10, 341-344.	3.8	13
126	Hormonal modulation of c-fos expression in isolated hepatocytes. Effects of angiotensin II and phorbol myristate acetate on transcription and mRNA degradation. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1310, 217-222.	4.1	13

#	Article	IF	CITATIONS
127	Protein kinase C-î±1b-adrenoceptor coimmunoprecipitation: effect of hormones and phorbol myristate acetate. European Journal of Pharmacology, 2001, 419, 9-13.	3.5	13
128	$\hat{l}\pm 1B$ -Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor- \hat{l}^2 . Biochemical Journal, 2002, 368, 581-587.	3.7	13
129	Effect of insulin on alpha1-adrenergic actions in hepatocytes from euthyroid and hypothyroid rats. Biochemical and Biophysical Research Communications, 1984, 118, 451-459.	2.1	12
130	Effect of pertussis toxin on the heart muscarinic-cholinergic receptors and their function. Life Sciences, 1986, 39, 603-610.	4.3	12
131	Homologous β-adrenergic desensitization in isolated rat hepatocytes. Biochemical Journal, 1987, 246, 331-336.	3.7	12
132	Protein kinases and phosphatases modulate c-fos expression in rat hepatocytes. effects of angiotensin II and phorbol myristate acetate. Life Sciences, 1995, 56, 723-728.	4.3	12
133	Angiotensin AT1 receptors in Clone 9 rat liver cells: Ca2+ signaling and c-fos expression. European Journal of Pharmacology, 1998, 362, 235-243.	3.5	12
134	Protein kinase C-mediated phosphorylation and desensitization of human $\hat{l}\pm 1b$ -adrenoceptors. European Journal of Pharmacology, 1999, 385, 263-271.	3.5	12
135	Phosphorylation, desensitization and internalization of human $\hat{l}\pm 1B$ -adrenoceptors induced by insulin-like growth factor-I. European Journal of Pharmacology, 2008, 578, 1-10.	3.5	12
136	Conventional protein kinase C isoforms mediate phorbol ester-induced lysophosphatidic acid LPA1 receptor phosphorylation. European Journal of Pharmacology, 2014, 723, 124-130.	3.5	12
137	Effect of pertussis vaccine on α-adrenoceptors of the circulatory system of the rat. European Journal of Pharmacology, 1982, 83, 123-126.	3.5	11
138	Inositol administration restores the sensitivity of liver cells formed during liver regeneration to alpha1-adrenergic amines, vasopressin and angiotensin II. Biochimica Et Biophysica Acta - Molecular Cell Research, 1983, 763, 125-128.	4.1	11
139	Direct action of pertussis toxin in isolated hamster fat cells. European Journal of Pharmacology, 1984, 99, 115-118.	3.5	11
140	Phorbol esters, vasopressin and angiotensin II block $\hat{l}\pm 1$ -adrenergic action in rat hepatocytes. Possible role of protein kinase C. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 887, 69-72.	4.1	11
141	Roles of the $\hat{l}\pm 1$ A-adrenergic receptor carboxyl tail in protein kinase C-induced phosphorylation and desensitization. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 382, 499-510.	3.0	11
142	α1D-Adrenergic Receptors. Methods in Enzymology, 2010, 484, 109-125.	1.0	11
143	Isoforms of protein kinase C involved in phorbol ester-induced sphingosine 1-phosphate receptor 1 phosphorylation and desensitization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 327-334.	4.1	11
144	Free fatty acid receptor 4 agonists induce lysophosphatidic acid receptor 1 (<scp>LPA</scp> ₁) desensitization independent of <scp>LPA</scp> ₁ internalization and heterodimerization. FEBS Letters, 2018, 592, 2612-2623.	2.8	11

#	Article	IF	CITATIONS
145	Characterization of the alpha 1A-adrenoceptors of guinea pig liver membranes: studies using 5-[3H]methylurapidil. Molecular Pharmacology, 1993, 44, 589-94.	2.3	11
146	Effects of adenosine on ethanol-induced modifications of liver metabolism. Biochemical Pharmacology, 1980, 29, 1709-1714.	4.4	10
147	Homologous and heterologous desensitization of one of the pathways of the $\hat{l}\pm 1$ -adrenergic action. Effects of epinephrine, vasopressin, angiotensin II and phorbol 12-myristate 13-acetate. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 887, 73-79.	4.1	10
148	Beta1-adrenoceptors in rat hepatoma. Desensitization by isoproterenol and phorbol-myristate-acetate. Life Sciences, 1989, 44, 1767-1775.	4.3	10
149	G Protein-Coupled Receptor-Receptor Tyrosine Kinase Receptor Crosstalk: Regulation of Receptor Sensitivity and Roles of Autocrine Feedback Loops and Signal Integration. Current Signal Transduction Therapy, 2008, 3, 174-182.	0.5	10
150	Receptor tyrosine kinases regulate $\hat{l}\pm 1D$ -adrenoceptor signaling properties: Phosphorylation and desensitization. International Journal of Biochemistry and Cell Biology, 2009, 41, 1276-1283.	2.8	10
151	Distinct phosphorylation sites/clusters in the carboxyl terminus regulate α1D-adrenergic receptor subcellular localization and signaling. Cellular Signalling, 2019, 53, 374-389.	3.6	10
152	Hormonal responsiveness of liver cells during the liver regeneration process induced by carbon tetrachloride administration. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 885, 102-109.	4.1	9
153	Insulin-like effect of epidermal growth factor in isolated rat hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 889, 266-269.	4.1	9
154	Characterization of the $\hat{l}\pm 1$ -adrenoceptors of cat liver. Predominance of the $\hat{l}\pm 1A$ -adrenergic subtype. Life Sciences, 1996, 59, 235-242.	4.3	9
155	Chloroethylclonidine is a partial $\hat{l}\pm 1$ A-adrenoceptor agonist in cells expressing recombinant $\hat{l}\pm 1$ -adrenoceptor subtypes. Life Sciences, 1997, 61, PL391-PL395.	4.3	9
156	Roles of c-Src in $\hat{l}\pm 1B$ -adrenoceptor phosphorylation and desensitization. Autonomic and Autacoid Pharmacology, 2008, 28, 29-39.	0.5	9
157	Homologous and heterologous \hat{I}^2 -adrenergic desensitization in hepatocytes. Additivity and effect of pertussis toxin. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 972, 311-319.	4.1	8
158	Contrasting effects of phorbol dibutyrate and phorbol myristate acetate in rabbit aorta. Biochemical and Biophysical Research Communications, 1990, 171, 618-624.	2.1	8
159	$\hat{l}\pm 1$ -Adrenoceptors in proximal segments of tail arteries from control and reserpinised rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 376, 117-126.	3.0	8
160	Signaling properties of human $\hat{l}\pm 1D$ -adrenoceptors lacking the carboxyl terminus: intrinsic activity, agonist-mediated activation, and desensitization. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 380, 99-107.	3.0	8
161	Sites phosphorylated in human $\hat{l}\pm 1B$ -adrenoceptors in response to noradrenaline and phorbol myristate acetate. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1509-1519.	4.1	8
162	Effects of histamine on the metabolism of isolated rat hepatocytes: roles of H1- and H2-histamine receptors. Molecular Pharmacology, 1987, 31, 253-8.	2.3	8

#	Article	IF	CITATIONS
163	Lipogenic action of cycloheximide on the rat epididymal fat pad. Biochemical Pharmacology, 1975, 24, 891-897.	4.4	7
164	Activation of lipolysis and cyclic AMP accumulation in rabbit adipocytes by isoproterenol in the presence of forskolin or pertussis toxin. Biochimica Et Biophysica Acta - General Subjects, 1984, 798, 382-389.	2.4	7
165	Possible existence of two mechanisms involved in $\hat{l}\pm 1$ -adrenergic action: Effect of Sgd 101/75. European Journal of Pharmacology, 1986, 125, 103-110.	3.5	7
166	Pertussis toxin enhances the beta-adrenergic and blocks the alpha-adrenergic regulation of renin secretion in renal cortical slices. Life Sciences, 1986, 38, 1005-1011.	4.3	7
167	Melittin stimulates liver glycogenolysis and the release of prostaglandin D2 and thromboxane B2. Biochemical Journal, 1990, 269, 273-275.	3.7	7
168	Histamine activates phosphorylase and inositol phosphate production in guinea pig hepatocytes. European Journal of Pharmacology, 1992, 227, 325-331.	2.6	7
169	Glycyl-histidyl-lysine interacts with the angiotensin II AT1 receptor. Peptides, 1995, 16, 1203-1207.	2.4	7
170	Okadaic acid increases the phosphorylation state of $\hat{l}\pm 1A$ -adrenoceptors and induces receptor desensitization. European Journal of Pharmacology, 2005, 525, 18-23.	3.5	7
171	Lysophosphatidic acid LPA ₁ receptor closeâ€up. Signal Transduction, 2007, 7, 351-363.	0.4	7
172	Sphingosine 1-phosphate-mediated $\hat{l}\pm 1B$ -adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 245-254.	4.1	7
173	Adrenaline and its receptors: one hundred years of research. Archives of Medical Research, 1995, 26, 205-12.	3.3	7
174	Stimulation of ureogenesis through $\hat{l}\pm 1$ - and \hat{l}^2 -adrenoceptors in juvenile rat hepatocytes. European Journal of Pharmacology, 1982, 82, 89-91.	3.5	6
175	RX781094 a potent and selective $\hat{i}\pm 2$ -adrenergic antagonist. Effects in adipocytes and hepatocytes. European Journal of Pharmacology, 1984, 99, 337-339.	3.5	6
176	$\hat{l}\pm 1$ -Adrenergic and M1-muscarinic actions and signal propagation. Trends in Pharmacological Sciences, 1985, 6, 349-350.	8.7	6
177	Activation of protein kinase C inhibits hormonal stimulation of the GTPase activity of Gi in human platelets. FEBS Letters, 1991, 279, 316-318.	2.8	6
178	Characterization of the $\hat{l}\pm 1$ -adrenoceptors of dog liver: predominance of the $\hat{l}\pm 1A$ -subtype. European Journal of Pharmacology, 1995, 272, 139-143.	3.5	6
179	Atypical angiotensin II receptors coupled to phosphoinositide turnover/calcium signalling in catfish hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1357, 201-208.	4.1	6
180	Inverse $\hat{l}\pm 1A$ and $\hat{l}\pm 1D$ adrenoceptor mRNA expression during isolation of hepatocytes. European Journal of Pharmacology, 1999, 384, 231-237.	3.5	6

#	Article	IF	CITATIONS
181	Molecular cloning and functional expression of the guinea pig $\hat{l}\pm 1$ a-adrenoceptor. European Journal of Pharmacology, 2001, 426, 147-155.	3.5	6
182	The LPA3 Receptor: Regulation and Activation of Signaling Pathways. International Journal of Molecular Sciences, 2021, 22, 6704.	4.1	6
183	Stimulatory action of cycloheximide on glucose metabolism in the rat epididymal fat pad. Journal of Lipid Research, 1977, 18, 93-98.	4.2	6
184	Roles of Receptor Phosphorylation and Rab Proteins in G Protein-Coupled Receptor Function and Trafficking. Molecular Pharmacology, 2022, 101, 144-153.	2.3	6
185	Effects of [1-Nα-trinitrophenylhistidine, 12-homoarginine]glucagon on cyclic AMP levels and free fatty acid release in isolated rat adipocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 886, 310-315.	4.1	5
186	Pertussis toxin induces fatty liver, hyperlipemia and ketosis in hamsters. Toxicon, 1987, 25, 603-609.	1.6	5
187	Modulation of glucagon actions by phorbol myristate acetate in isolated hepatocytes. Effect of hypothyroidism. Cellular Signalling, 1990, 2, 235-243.	3.6	5
188	Modulation by protein kinase C of the hormonal responsiveness of hepatocytes from lean (Fa/fa?) and obese (fa/fa) Zucker rats. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 221-225.	4.1	5
189	Visualizing G Protein-coupled Receptors in Action through Confocal Microscopy Techniques. Archives of Medical Research, 2014, 45, 283-293.	3.3	5
190	Agonists and protein kinase C-activation induce phosphorylation and internalization of FFA1 receptors. European Journal of Pharmacology, 2015, 768, 108-115.	3.5	5
191	Receptor tyrosine kinase activation induces free fatty acid 4 receptor phosphorylation, \hat{l}^2 -arrestin interaction, and internalization. European Journal of Pharmacology, 2019, 855, 267-275.	3.5	5
192	The $\hat{l}\pm 1$ -adrenoceptor-mediated human hyperplastic prostate cells proliferation is impaired by EGF receptor inhibition. Life Sciences, 2019, 239, 117048.	4.3	5
193	Lysophosphatidic acid induces alpha 1B-adrenergic receptor phosphorylation through G beta gamma, phosphoinositide 3-kinase, protein kinase C and epidermal growth factor receptor transactivation. Biochimica Et Biophysica Acta, 2003, 1633, 75-83.	1.3	5
194	Effects of pertussis vaccine on the lipid metabolism of hamsters. Life Sciences, 1981, 29, 1021-1026.	4.3	4
195	Effect of inositol and tri-iodothyronine on the hormonal responsiveness of hepatocytes obtained from partially hepatectomized rats. Biochemical Journal, 1984, 223, 925-928.	3.7	4
196	Pertussis toxin potentiates anesthesia-induced renin secretion. European Journal of Pharmacology, 1985, 112, 115-117.	3 . 5	4
197	Effect of pertussis toxin on the heart acetylcholine muscarinic receptor affinity. European Journal of Pharmacology, 1986, 127, 49-56.	3 . 5	4
198	†Inhibitory' receptors and ion channel effectors. Trends in Pharmacological Sciences, 1988, 9, 271-272.	8.7	4

#	Article	IF	Citations
199	Hepatocyte homologous \hat{i}^2 2-adrenergic desensitization is associated with a decrease in number of plasma membrane \hat{i}^2 2-adrenoceptors. European Journal of Pharmacology, 1993, 244, 145-151.	2.6	4
200	Coexpression of $\hat{l}\pm 1A$ - and $\hat{l}\pm 1B$ -adrenoceptors in the liver of the rhesus monkey (Macaca mulatta). European Journal of Pharmacology, 1996, 311, 277-283.	3.5	4
201	Hormonal Responsiveness of Hepatocytes After Hypothermic Preservation in University of Wisconsin Solution. Cellular Signalling, 1997, 9, 277-281.	3.6	4
202	The phosphoinositide-dependent protein kinase 1 inhibitor, UCN-01, induces fragmentation: Possible role of metalloproteinases. European Journal of Pharmacology, 2014, 740, 88-96.	3.5	4
203	Carboxyl terminus-truncated $\hat{1}\pm 1D$ -adrenoceptors inhibit the ERK pathway. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 911-920.	3.0	4
204	A549 cells as a model to study endogenous LPA 1 receptor signaling and regulation. European Journal of Pharmacology, 2017, 815, 258-265.	3.5	4
205	Glycogen Synthase Kinase-3 modulates $\hat{l}\pm 1$ A-adrenergic receptor action and regulation. European Journal of Cell Biology, 2020, 99, 151072.	3.6	4
206	Pathways of a,-Adrenergic Action: Comparison With V,-Vasopressin and A,-Angiotensin. Circulation Research, $1987,61,\ldots$	4.5	4
207	Stimulatory action of cycloheximide on glucose metabolism in the rat epididymal fat pad. Journal of Lipid Research, 1977, 18, 93-8.	4.2	4
208	α1-Adrenergic action: only calcium?. Trends in Pharmacological Sciences, 1983, 4, 489.	8.7	3
209	Pertussis toxin and the heart. Trends in Pharmacological Sciences, 1986, 7, 429-430.	8.7	3
210	Effect of phorbol esters on the hormonal responsiveness of isolated white fat cells. European Journal of Pharmacology, 1988, 146, 193-199.	3.5	3
211	Purification and Characterization of Receptors for Activated Protein Kinase C from Rat Hepatocytes. Protein Expression and Purification, 1997, 10, 32-37.	1.3	3
212	Roles of the G protein-coupled receptor kinase 2 and Rab5 in $\hat{l}\pm 1B$ -adrenergic receptor function and internalization. European Journal of Pharmacology, 2020, 867, 172846.	3.5	3
213	Effect of docosahexaenoic acid, phorbol myristate acetate, and insulin on the interaction of the FFA4 (short isoform) receptor with Rab proteins. European Journal of Pharmacology, 2020, 889, 173595.	3.5	3
214	Effects of agonists and phorbol esters on $\hat{l}\pm 1$ A-adrenergic receptor-Rab protein interactions. European Journal of Pharmacology, 2020, 885, 173423.	3.5	3
215	Importance of the esterification process in adipose tissue metabolism as evidenced by cycloheximide. Biochemical Pharmacology, 1978, 27, 1577-1579.	4.4	2
216	Bordetella pertussis toxin and adenylate cyclase. Trends in Pharmacological Sciences, 1983, 4, 289-290.	8.7	2

#	Article	IF	CITATIONS
217	Forskolin effects on the beta-adrenergic responsiveness of rat hepatocytes. Biochemical Pharmacology, 1984, 33, 3099-3101.	4.4	2
218	Characterization of the \hat{I}^22 adrenoceptors of dog liver. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1996, 115, 61-65.	0.5	2
219	Activation of bradykinin B2 receptors increases calcium entry and intracellular mobilization in C9 liver cells. IUBMB Life, 1999, 47, 927-933.	3.4	2
220	Peroxovanadate induces \$alpha;1B-adrenoceptor phosphorylation and association with protein kinase C. European Journal of Pharmacology, 2004, 485, 61-67.	3.5	2
221	Roles of phosphoinositide-dependent kinase-1 in $\hat{l}\pm 1B$ -adrenoceptor phosphorylation and desensitization. European Journal of Pharmacology, 2012, 674, 179-187.	3.5	2
222	Mutation of putative phosphorylation sites in the free fatty acid receptor 1: Effects on signaling, receptor phosphorylation, and internalization. Molecular and Cellular Endocrinology, 2022, 545, 111573.	3.2	2
223	Cell Trafficking and Function of G Protein-coupled Receptors. Archives of Medical Research, 2022, 53, 451-460.	3.3	2
224	Two types of alpha adrenoceptors in liver cells. Trends in Pharmacological Sciences, 1982, 3, 138-139.	8.7	1
225	Effect of pertussis toxin on water metabolism in the rat. Life Sciences, 1986, 38, 15-19.	4.3	1
226	Chloroquine inhibits $\hat{l}\pm 1B$ -adrenergic action in hepatocytes. European Journal of Pharmacology, 1998, 342, 333-338.	3.5	1
227	Intracellular Calcium and $\hat{l}\pm 1b$ -Adrenoceptor Phosphorylation. Archives of Medical Research, 1999, 30, 353-357.	3.3	1
228	Editorial: Signal transduction in Mexico. Signal Transduction, 2007, 7, 349-350.	0.4	1
229	Effect of inhibitors of mitogenâ€activated protein kinase kinase on α _{1B} â€adrenoceptor phosphorylation. Autonomic and Autacoid Pharmacology, 2009, 29, 13-23.	0.5	1
230	Phosphorylation and internalization of short splicing variant of the omega 3 fatty acid sensor, GPR120. FASEB Journal, 2013, 27, 1173.5.	0.5	1
231	EFFECT OF PERTUSSIS TOXIN ON THE HORMONAL RESPONSIVENESS OF DIFFERENT TISSUES. , 1985, , 205-223.		1
232	Transmodulation, receptor phosphorylation and protein kinases. Trends in Pharmacological Sciences, 1985, 6, 191-192.	8.7	0
233	Homologous and heterologous \hat{l}^2 -adrenergic desensitization in hepatocytes. Additivity and effect of pertussis toxin. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 972, 311-319.	1.0	O
234	Characterization of the $\hat{l}\pm 1B$ -adrenergic receptors of chicken hepatocytes. Signal transduction and actions. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1993, 106, 797-803.	0.5	O

#	Article	IF	CITATIONS
235	A Latin American Perspective on G Protein–Coupled Receptors. Molecular Pharmacology, 2016, 90, 570-572.	2.3	o
236	El receptor S1P1 de la esfingosina1-fosfato: avances en el conocimiento de su estructura, función e importancia biomédica. TIP Revista Especializada En Ciencias QuÃmico-Biológicas, 0, 24, .	0.3	0
237	Complex interactions of sibutramine with α 1D â€adrenoceptors. FASEB Journal, 2008, 22, 726.1.	0.5	O
238	S1P 1 Receptor Regulation by Phosphorylation. FASEB Journal, 2013, 27, 1040.2.	0.5	0